Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction

Shanshan Ding , Wen Huang , Shaogui Yang , Danjun Mao , Julong Yuan , Yuxuan Dai , Jijie Kong , Cheng Sun , Huan He , Shiyin Li , Limin Zhang

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 5

PDF (551KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 5 DOI: 10.1007/s11783-017-1003-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction

Author information +
History +
PDF (551KB)

Abstract

The adsorption behavior of DB BN on microwave catalyst MgFe2O4-SiC was investigated and the effects of concentration, temperature and pH on the adsorption process were discussed in this study.

The microwave-induced catalytic degradation rate of DB BN decreased even more than ten percent after the adsorption equilibrium were attained.

The degradation intermediate products of DB BN were identified and analyzed by GC-MS and LC-MS.

The proposed degradation pathways of direct black BN (DB BN) were described by combining with the microwave-induced catalytic reaction mechanism of MgFe2O4-SiC.

The novel microwave catalyst MgFe2O4-SiC was synthesized via sol-gel method, to remove azo dye Direct Black BN (DB BN) through adsorption and microwave-induced catalytic reaction. Microwave-induced catalytic degradation of DB BN, including adsorption behavior and its influencing factors of DB BN on MgFe2O4-SiC were investigated. According to the obtained results, it indicated that the pseudo-second-order kinetics model was suitable for the adsorption of DB BN onto MgFe2O4-SiC. Besides, the consequence of adsorption isotherm depicted that the adsorption of DB BN was in accordance with the Langmuir isotherm, which verified that the singer layer adsorption of MgFe2O4-SiC was dominant than the multi-layer one. The excellent adsorption capacities of MgFe2O4-SiC were kept in the range of initial pH from 3 to 7. In addition, it could be concluded that the degradation rate of DB BN decreased over ten percent after the adsorption equilibrium had been attained, and the results from the result of comparative experiments manifested that the adsorption process was not conducive to the process of microwave-induced catalytic degradation. The degradation intermediates and products of DB BN were identified and determined by GC-MS and LC-MS. Furthermore, combined with the catalytic mechanism of MgFe2O4-SiC, the proposed degradation pathways of DB BN were the involution of microwave-induced ·OH and holes in this catalytic system the breakage of azo bond, hydroxyl substitution, hydroxyl addition, nitration reaction, deamination reaction, desorbate reaction, dehydroxy group and ring-opening reaction.

Graphical abstract

Keywords

Adsorption / Microwave-induced catalytic degradation / Direct black BN / Degradation pathway

Cite this article

Download citation ▾
Shanshan Ding, Wen Huang, Shaogui Yang, Danjun Mao, Julong Yuan, Yuxuan Dai, Jijie Kong, Cheng Sun, Huan He, Shiyin Li, Limin Zhang. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction. Front. Environ. Sci. Eng., 2018, 12(1): 5 DOI:10.1007/s11783-017-1003-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang HZhang LChen ZHu JLi SWang ZLiu JWang X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews201443(15): 5234–5244

[2]

Chowdhury SBalasubramanian R. Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Applied Catalysis B: Environmental2014160: 307–324

[3]

Rache M LGarcia A RZea H RSilva A M TMadeira L MRamirez J H. Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-Kinetics with a model based on the Fermi’s equation. Applied Catalysis B: Environmental2014146: 192–200

[4]

Chang J SChou CLin Y CLin P JHo J YHu T L. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Research200135(12): 2841–2850

[5]

Saratale R GSaratale G DKalyani D CChang J SGovindwar S P. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR. Bioresource Technology2009100(9): 2493–2500

[6]

Han FKambala V S RSrinivasan MRajarathnam DNaidu R. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis a-General, 2009, 359(1–2): 25–40

[7]

Engel EUlrich HVasold RKönig BLandthaler MSüttinger RBäumler W. Azo pigments and a basal cell carcinoma at the thumb. Dermatology (Basel, Switzerland)2008216(1): 76–80

[8]

Ahmed M ABrick A AMohamed A A. An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route. Chemosphere2017174: 280–288

[9]

He QNi YYe S. Preparation of flowerlike BiOBr/Bi2MoO6 composite superstructures and the adsorption behavior to dyes. Journal of Physics and Chemistry of Solids2017104: 286–292

[10]

Kusvuran EGulnaz OIrmak SAtanur O MYavuz H IErbatur O. Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution. Journal of Hazardous Materials2004109(1-3): 85–93

[11]

Pera-Titus MGarcia-Molina VBanos M AGimenez JEsplugas S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis B: Environmental200447(4): 219–256

[12]

Thostenson E TChou T W. Microwave processing: Fundamentals and applications.  Composites Part A—Applied Science and Manufacturing199930(9): 1055–1071

[13]

Mao DYu ADing SWang FYang SSun CHe HLiu YYu K. One-pot synthesis of BiOCl half-shells using microemulsion droplets as templates with highly photocatalytic performance for the degradation of ciprofloxacin. Applied Surface Science2016389: 742–750

[14]

Mao DDing SMeng LDai YSun CYang SHe H. One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants. Applied Catalysis B: Environmental2017207: 153–165

[15]

Ding SMao DYang SWang FMeng LHan MHe HSun CXu B. Grapnene-analogue h-BN coupled Bi-rich Bi4O5Br2 layered microspheres for enhanced visible-light photocatalytic activity and mechanism insight. Applied Catalysis B: Environmental2017210: 386–399

[16]

He HYang SYu KJu YSun CWang L. Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. Journal of Hazardous Materials2010173(1–3): 393–400

[17]

Zhang LLiu XGuo XSu MXu TSong X. Investigation on the degradation of brilliant green induced oxidation by NiFe2O4 under microwave irradiation. Chemical Engineering Journal2011173(3): 737–742

[18]

Lai T LLiu J YYong K FShu Y YWang C B. Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature. Applied Catalysis B: Environmental2008157(2-3): 496–502

[19]

Lai T LLiu J YYong K FShu Y YWang C B. Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides under low temperature. Journal of Hazardous Materials2008157(2-3): 496–502

[20]

Lai T LLee C CWu K SShu Y YWang C B. Microwave-enhanced catalytic degradation of phenol over nickel oxide. Applied Catalysis B: Environmental200668(3–4): 147–153

[21]

Remya NLin J G. Current status of microwave application in wastewater treatment—A review. Chemical Engineering Journal2011166(3): 797–813

[22]

de la Hoz ADíaz-Ortiz AMoreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chemical Society Reviews200534(2): 164–178

[23]

Chen JXue SSong YShen MZhang ZYuan TTian FDionysiou D D. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution. Journal of Hazardous Materials2016310: 226–234

[24]

Xiao JFang XYang SHe HSun C. Microwave-assisted heterogeneous catalytic oxidation of high-concentration Reactive yellow 3 with CuFe2O4/PAC. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)201590(10): 1861–1868

[25]

Shi WLi QAn SZhang TZhang L. Magnetic nanosized calcium ferrite particles for efficient degradation of crystal violet using a microwave-induced catalytic method: Insight into the degradation pathway. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)201691(2): 367–374

[26]

Zhang LZhou XGuo XSong XLiu X. Investigation on the degradation of acid fuchsin induced oxidation by MgFe2O4 under microwave irradiation. Journal of Molecular Catalysis a-Chemical2011335(1–2): 31–37

[27]

Dong LQiao JYan LZheng GXiao F. Study on microwave combined with active carbon for treatment of azo-dye wastewater. Environmental Pollution & Control201032(4): 34–39

[28]

Fang XXiao JYang SHe HSun C. Investigation on microwave absorbing properties of loaded MnFe2O4 and degradation of Reactive Brilliant Red X-3B. Applied Catalysis B: Environmental2015162: 544–550

[29]

Gao JYang SLi NMeng LWang FHe HSun C. Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation. Applied Surface Science2016379: 140–149

[30]

Sun TZhao ZLiang ZLiu JShi WCui F. Efficient As(III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation. Journal of Colloid and Interface Science2017495: 168–177

[31]

Bulut EOezacar MSengil I A. Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design. Microporous and Mesoporous Materials2008115(3): 234–246

[32]

Zhang ZShan YWang JLing HZang SGao WZhao ZZhang H. Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation. Journal of Hazardous Materials2007147(1-2): 325–333

[33]

Wang CYediler ALienert DWang ZKettrup A. Ozonation of an azo dye C.I. Remazol Black 5 and toxicological assessment of its oxidation products. Chemosphere200352(7): 1225–1232

[34]

Quan XZhang YChen SZhao YYang F. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances. Journal of Molecular Catalysis A—Chemical, 2007263(1–2): 216–222

[35]

Zhang ZDeng YShen MHan WChen ZXu DJi X. Investigation on rapid degradation of sodium dodecyl benzene sulfonate (SDBS) under microwave irradiation in the presence of modified activated carbon powder with ferreous sulfate. Desalination2009249(3): 1022–1029

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (551KB)

2118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/