PDF
(182KB)
Abstract
WPCBs concentrated metal scraps were directly and successfully recycled by electrolysis.
Factors that affect the electrolysis were discussed in detail.
Copper recovery rate and copper purity are up to 97.32% and 99.86% respectively.
![]()
Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis and factors that affect copper recovery rate and purity, mainly CuSO4·5H2O concentration, NaCl concentration, H2SO4 concentration and current density, were discussed in detail. The results indicated that copper recovery rate increased first with the increase of CuSO4·5H2O NaCl, H2SO4 and current density and then decreased with further increasing these conditions. NaCl, H2SO4 and current density also showed a similar impact on copper purity, which also increased first and then decreased. Copper purity increased with the increase of CuSO4·5H2O. When the concentration of CuSO4·5H2O, NaCl and H2SO4 was respectively 90, 40 and 118 g/L and current density was 80 mA/cm2, copper recovery rate and purity was up to 97.32% and 99.86%, respectively. Thus, electrolysis proposes a feasible and prospective approach for waste printed circuit boards recycle, even for e-waste, though more researches are needed for industrial application.
Graphical abstract
Keywords
Waste printed circuit boards (WPCBs)
/
Copper
/
Recovery rate
/
Purity
/
Electrolysis
Cite this article
Download citation ▾
Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen.
Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis.
Front. Environ. Sci. Eng., 2017, 11(5): 10 DOI:10.1007/s11783-017-0997-4
| [1] |
Zeng X L, Yang C R, Chiang J F, Li J H. Innovating e-waste management: From macroscopic to microscopic scales. Science of the Total Environment, 2017, 575: 1–5
|
| [2] |
Tan Q Y, Dong Q Y, Liu L L, Song Q B, Liang Y Y, Li J H. Potential recycling availability and capacity assessment on typical metals in waste mobile phones: A current research study in China. Journal of Cleaner Production, 2017, 148: 509–517
|
| [3] |
Jadhav U, Su C, Hocheng H. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide. Environmental Science and Pollution Research International, 2016, 23(23): 24384–24392
|
| [4] |
Yang C R, Li J H, Tan Q Y, Liu L L, Dong Q Y. Green process of metal recycling: Coprocessing waste printed circuit boards and spent tin stripping solution. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3524–3534
|
| [5] |
Kim E Y, Kim M S, Lee J C, Jeong J, Pandey B D. Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in HCl solution. Hydrometallurgy, 2011, 107(3–4): 124–132
|
| [6] |
Xia M C, Wang Y P, Peng T J, Shen L, Yu R L, Liu Y D, Chen M, Li J K, Wu X L, Zeng W M. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. Journal of Bioscience and Bioengineering, 2017, 123(6): 714–721
|
| [7] |
Zhang S, Li Y G, Wang R, Xu Z H, Wang B, Chen S, Chen M J. Superfine copper powders recycled from concentrated metal scraps of waste printed circuit boards by slurry electrolysis. Journal of Cleaner Production, 2017, 152: 1–6
|
| [8] |
Shokri A, Pahlevani F, Cole I, Sahajwalla V. Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy. Journal of Environmental Management, 2017, 199: 7–12
|
| [9] |
Xiu F R, Weng H W, Qi Y Y, Yu G D, Zhang Z G, Zhang F S, Chen M. A novel recovery method of copper from waste printed circuit boards by supercritical methanol process: Preparation of ultrafine copper materials. Waste Management (New York, N.Y.), 2016 60: 643–651
|
| [10] |
Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256
|
| [11] |
Li J H, Duan H B, Yu K L, Liu L L, Wang S T. Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resources, Conservation and Recycling, 2010, 54(11): 810–815
|
| [12] |
Duan H B, Li J H, Liu Y C, Yamazaki N, Jiang W. Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board. Environmental Pollution, 2012, 161(1): 185–191
|
| [13] |
Park Y J, Fray D J. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 2009, 164(2-3): 1152–1158
|
| [14] |
Zhu P, Fan Z Y, Lin J, Liu Q, Qian G R, Zhou M. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board. Journal of Hazardous Materials, 2009, 166(2–3): 746–750
|
| [15] |
Havlik T, Orac D, Berwanger M, Maul A. The effect of mechanical–physical pretreatment on hydrometallurgical extraction of copper and tin in residue from printed circuit boards from used consumer equipment. Minerals Engineering, 2014, 65(2): 163–171
|
| [16] |
Rozas E E, Mendes M A, Nascimento C A O, Espinosa D C R, Oliveira R, Oliveira G, Custodio M R. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). Journal of Hazardous Materials, 2017, 329: 120–130
|
| [17] |
Calgaro C O, Schlemmer D F, da Silva M D C R, Maziero E V, Tanabe E H, Bertuol D A. Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Management (New York, N.Y.), 2015, 45: 289–297
|
| [18] |
Xiu F R, Zhang F S. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process. Journal of Hazardous Materials, 2009, 165(1–3): 1002–1007
|
| [19] |
Verma H R, Singh K K, Mankhand T R. Delamination mechanism study of large size waste printed circuit boards by using dimethylacetamide. Waste Management (New York, N.Y.), 2017, 65: 139–146
|
| [20] |
Awasthi A K, Zlamparet G I, Zeng X L, Li J H. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review. Waste Management & Research, 2017, 35(4): 346–356
|
| [21] |
Ning C, Lin C S K, Hui D C W, McKay G. Waste Printed Circuit Board (PCB) Recycling Techniques. Topics in Current Chemistry, 2017, 375(2): 43
|
| [22] |
Madavali B, Lee J H, Jin K L, Cho K Y, Challapalli S, Hong S J. Effects of atmosphere and milling time on the coarsening of copper powders during mechanical milling. Powder Technology, 2014, 256(2): 251–256
|
| [23] |
Chu Y Y, Chen M J, Chen S, Wang B, Fu K B, Chen H Y. Micro-copper powders recovered from waste printed circuit boards by electrolysis. Hydrometallurgy, 2015, 156: 152–157
|
| [24] |
Wilson M A, Burt R, Lynn W C, Klameth L C. Total elemental analysis digestion method evaluation on soils and clays. Communications in Soil Science and Plant Analysis, 1997, 28(6–8): 407–426
|
| [25] |
Somasundaram M, Saravanathamizhan R, Basha C A, Nandakumar V, Begum S N, Kannadasan T. Recovery of copper from scrap printed circuit board: modelling and optimization using response surface methodology. Powder Technology, 2014, 266(6): 1–6
|
| [26] |
Matsushima H, Bund A, Plieth W, Kikuchi S, Fukunaka Y. Copper electrodeposition in a magnetic field. Electrochimica Acta, 2007, 53(1): 161–166
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany