Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis

Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen

PDF(182 KB)
PDF(182 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (5) : 10. DOI: 10.1007/s11783-017-0997-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis

Author information +
History +

Highlights

WPCBs concentrated metal scraps were directly and successfully recycled by electrolysis.

Factors that affect the electrolysis were discussed in detail.

Copper recovery rate and copper purity are up to 97.32% and 99.86% respectively.

Abstract

Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis and factors that affect copper recovery rate and purity, mainly CuSO4·5H2O concentration, NaCl concentration, H2SO4 concentration and current density, were discussed in detail. The results indicated that copper recovery rate increased first with the increase of CuSO4·5H2O NaCl, H2SO4 and current density and then decreased with further increasing these conditions. NaCl, H2SO4 and current density also showed a similar impact on copper purity, which also increased first and then decreased. Copper purity increased with the increase of CuSO4·5H2O. When the concentration of CuSO4·5H2O, NaCl and H2SO4 was respectively 90, 40 and 118 g/L and current density was 80 mA/cm2, copper recovery rate and purity was up to 97.32% and 99.86%, respectively. Thus, electrolysis proposes a feasible and prospective approach for waste printed circuit boards recycle, even for e-waste, though more researches are needed for industrial application.

Graphical abstract

Keywords

Waste printed circuit boards (WPCBs) / Copper / Recovery rate / Purity / Electrolysis

Cite this article

Download citation ▾
Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen. Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis. Front. Environ. Sci. Eng., 2017, 11(5): 10 https://doi.org/10.1007/s11783-017-0997-4

References

[1]
Zeng X L, Yang C R, Chiang J F, Li J H. Innovating e-waste management: From macroscopic to microscopic scales. Science of the Total Environment, 2017, 575: 1–5
CrossRef Pubmed Google scholar
[2]
Tan Q Y, Dong Q Y, Liu L L, Song Q B, Liang Y Y, Li J H. Potential recycling availability and capacity assessment on typical metals in waste mobile phones: A current research study in China. Journal of Cleaner Production, 2017, 148: 509–517
CrossRef Google scholar
[3]
Jadhav U, Su C, Hocheng H. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide. Environmental Science and Pollution Research International, 2016, 23(23): 24384–24392
CrossRef Pubmed Google scholar
[4]
Yang C R, Li J H, Tan Q Y, Liu L L, Dong Q Y. Green process of metal recycling: Coprocessing waste printed circuit boards and spent tin stripping solution. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3524–3534
CrossRef Google scholar
[5]
Kim E Y, Kim M S, Lee J C, Jeong J, Pandey B D. Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in HCl solution. Hydrometallurgy, 2011, 107(3–4): 124–132
CrossRef Google scholar
[6]
Xia M C, Wang Y P, Peng T J, Shen L, Yu R L, Liu Y D, Chen M, Li J K, Wu X L, Zeng W M. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. Journal of Bioscience and Bioengineering, 2017, 123(6): 714–721
CrossRef Pubmed Google scholar
[7]
Zhang S, Li Y G, Wang R, Xu Z H, Wang B, Chen S, Chen M J. Superfine copper powders recycled from concentrated metal scraps of waste printed circuit boards by slurry electrolysis. Journal of Cleaner Production, 2017, 152: 1–6
CrossRef Google scholar
[8]
Shokri A, Pahlevani F, Cole I, Sahajwalla V. Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy. Journal of Environmental Management, 2017, 199: 7–12
CrossRef Pubmed Google scholar
[9]
Xiu F R, Weng H W, Qi Y Y, Yu G D, Zhang Z G, Zhang F S, Chen M. A novel recovery method of copper from waste printed circuit boards by supercritical methanol process: Preparation of ultrafine copper materials. Waste Management (New York, N.Y.), 2016 , 60: 643–651
Pubmed
[10]
Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256
CrossRef Pubmed Google scholar
[11]
Li J H, Duan H B, Yu K L, Liu L L, Wang S T. Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resources, Conservation and Recycling, 2010, 54(11): 810–815
CrossRef Google scholar
[12]
Duan H B, Li J H, Liu Y C, Yamazaki N, Jiang W. Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board. Environmental Pollution, 2012, 161(1): 185–191
CrossRef Pubmed Google scholar
[13]
Park Y J, Fray D J. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 2009, 164(2-3): 1152–1158
CrossRef Pubmed Google scholar
[14]
Zhu P, Fan Z Y, Lin J, Liu Q, Qian G R, Zhou M. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board. Journal of Hazardous Materials, 2009, 166(2–3): 746–750
CrossRef Pubmed Google scholar
[15]
Havlik T, Orac D, Berwanger M, Maul A. The effect of mechanical–physical pretreatment on hydrometallurgical extraction of copper and tin in residue from printed circuit boards from used consumer equipment. Minerals Engineering, 2014, 65(2): 163–171
CrossRef Google scholar
[16]
Rozas E E, Mendes M A, Nascimento C A O, Espinosa D C R, Oliveira R, Oliveira G, Custodio M R. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). Journal of Hazardous Materials, 2017, 329: 120–130
CrossRef Pubmed Google scholar
[17]
Calgaro C O, Schlemmer D F, da Silva M D C R, Maziero E V, Tanabe E H, Bertuol D A. Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Management (New York, N.Y.), 2015, 45: 289–297
CrossRef Pubmed Google scholar
[18]
Xiu F R, Zhang F S. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process. Journal of Hazardous Materials, 2009, 165(1–3): 1002–1007
CrossRef Pubmed Google scholar
[19]
Verma H R, Singh K K, Mankhand T R. Delamination mechanism study of large size waste printed circuit boards by using dimethylacetamide. Waste Management (New York, N.Y.), 2017, 65: 139–146
CrossRef Pubmed Google scholar
[20]
Awasthi A K, Zlamparet G I, Zeng X L, Li J H. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review. Waste Management & Research, 2017, 35(4): 346–356
CrossRef Pubmed Google scholar
[21]
Ning C, Lin C S K, Hui D C W, McKay G. Waste Printed Circuit Board (PCB) Recycling Techniques. Topics in Current Chemistry, 2017, 375(2): 43
CrossRef Pubmed Google scholar
[22]
Madavali B, Lee J H, Jin K L, Cho K Y, Challapalli S, Hong S J. Effects of atmosphere and milling time on the coarsening of copper powders during mechanical milling. Powder Technology, 2014, 256(2): 251–256
CrossRef Google scholar
[23]
Chu Y Y, Chen M J, Chen S, Wang B, Fu K B, Chen H Y. Micro-copper powders recovered from waste printed circuit boards by electrolysis. Hydrometallurgy, 2015, 156: 152–157
CrossRef Google scholar
[24]
Wilson M A, Burt R, Lynn W C, Klameth L C. Total elemental analysis digestion method evaluation on soils and clays. Communications in Soil Science and Plant Analysis, 1997, 28(6–8): 407–426
CrossRef Google scholar
[25]
Somasundaram M, Saravanathamizhan R, Basha C A, Nandakumar V, Begum S N, Kannadasan T. Recovery of copper from scrap printed circuit board: modelling and optimization using response surface methodology. Powder Technology, 2014, 266(6): 1–6
CrossRef Google scholar
[26]
Matsushima H, Bund A, Plieth W, Kikuchi S, Fukunaka Y. Copper electrodeposition in a magnetic field. Electrochimica Acta, 2007, 53(1): 161–166
CrossRef Google scholar

Acknowledgements

This work supported by funds from the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (Nos. 11zxfk26 and 13zxfk11), Scientific Research Fund of Mianyang City (No. 14S-01-2), and Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory (No. 15kffk05).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(182 KB)

Accesses

Citations

Detail

Sections
Recommended

/