Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media

Teza Mwamulima , Xiaolin Zhang , Yongmei Wang , Shaoxian Song , Changsheng Peng

Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 2

PDF (555KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (2) : 2 DOI: 10.1007/s11783-017-0979-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media

Author information +
History +
PDF (555KB)

Abstract

A novel approach was used to control zero valent iron aggregation and separation problems by fixing zero valent iron (ZVI) on low cost bentonite-fly ash (BFA) pellets to produce ZVI-BFA.

ZVI-BFA pellets have good size, don’t disintegrate and can easily be separated from water when exhausted.

Removal kinetics followed the pseudo second order kinetic model.

Combined physical and chemical processes are the characteristic removal mechanisms of Pb2+ and Cd2+ by ZVI-BFA.

In the present study, a novel approach was used to control zero valent iron aggregation and separation problems by fixing zero valent iron (ZVI) on bentonite-fly ash pellets. For this purpose, porous low cost bentonite-fly ash (BFA) pellets with size of 2.00 cm in length and 0.35 cm in diameter were prepared and fixed with ZVI to manufacture zero valent iron bentonite-fly ash (ZVI-BFA) pellets. Importantly, unlike powdered adsorbents, ZVI-BFA can easily be separated from final effluents when exhausted without any disintegration. The performance of the developed novel adsorbent was investigated for the removal of Pb2+ and Cd2+ from aqueous media. At 100 mg·L1 and 1 g adsorbent, a maximum of 89.5% of Cd2+ and 95.6% of Pb2+ was removed by ZVI-BFA as compared to 56% and 95% removal by BFA. At 200 mg·L1, Cd2+ and Pb2+ removal by ZVI-BFA was 56% and 99.8% respectively as compared to only 28% and 96% by BFA. Further, the removal kinetics was best fitted for pseudo-second order model. The study provides the basis for improving the removal capacity of porous materials by iron fixation while taking separation ability into consideration.

Graphical abstract

Keywords

Zero valent iron / Bentonite / Fly ash / Heavy metals removal / Synthesis

Cite this article

Download citation ▾
Teza Mwamulima, Xiaolin Zhang, Yongmei Wang, Shaoxian Song, Changsheng Peng. Novel approach to control adsorbent aggregation: iron fixed bentonite-fly ash for Lead (Pb) and Cadmium (Cd) removal from aqueous media. Front. Environ. Sci. Eng., 2018, 12(2): 2 DOI:10.1007/s11783-017-0979-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

IPCS. Cadmium, cadmium chloride, cadmium oxide, cadmium sulphide, cadmium acetate, cadmium sulphate. Geneva, World Health Organization, International Programme on Chemical Safety (International Chemical Safety Cards 0020, 0116, 0117, 0404, 1075 and 1318. Available online at 160;(accessed January 15, 2017)

[2]

Hizal JApak R. Modeling of copper(II) and lead(II) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid. Journal of Colloid and Interface Science2006295(1): 1–13

[3]

WHO. Guidelines for Drinking-water Quality. First addendum to third edition2006. Available online at: 160;(accessed December 4, 2016).

[4]

Wei Y TWu S CYang S WChe C HLien H LHuang D H. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane. Journal of Hazardous Materials2012211 212: 373–380 PMID:22118849 

[5]

Shi L NLin Y MZhang XChen Z. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chemical Engineering Journal2011a171(2): 612–617

[6]

Shi ZNurmi J TTratnyek P G. Effects of nano zero-valent iron on oxidation-reduction potential. Environmental Science & Technology2011b45(4): 1586–1592

[7]

Sunkara BZhan JKolesnichenko IWang YHe JHolland J EMcPherson G LJohn V T. Modifying metal nanoparticle placement on carbon supports using an aerosol-based process, with application to the environmental remediation of chlorinated hydrocarbons. Langmuir201127(12): 7854–7859

[8]

Chen Z XJin X YChen ZMegharaj MNaidu R. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid and Interface Science2011363(2): 601–607

[9]

Arancibia-Miranda NBaltazar S EGarcía AMuñoz-Lira DSepúlveda PRubio M AAltbir D. Nanoscale zero valent supported by Zeolite and Montmorillonite: template effect of the removal of lead ion from an aqueous solution. Journal of Hazardous Materials2016301: 371–380

[10]

Wu LLiao LLv GQin F. Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Cr(VI) removal. Journal of Contaminant Hydrology2015179: 1–9

[11]

Potuzak M. Potassium Dichromate Potentiometric Titration of Iron in Natural Magmas. LMU Intrainstitute Manual2001.

[12]

Ho Y SMcKay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection1998a76(4): 332–340

[13]

Ho Y SMcKay G. Sorption of dye from aqueous solution by peat. Chemical Engineering Journal1998b70(2): 115–124

[14]

Alkan MDemirbaş ÖDoğan M. Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous and Mesoporous Materials2007101(3): 388–396

[15]

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society191840(9): 1361–1403

[16]

Freundlich H M F. Über die adsorption in lösungen. Journal of Physical Chemistry190657: 385–470

[17]

Kong XHan ZZhang WSong LLi H. Synthesis of zeolite-supported microscale zero-valent iron for the removal of Cr6+ and Cd2+ from aqueous solution. Journal of Environmental Management2016169: 84–90

[18]

Wang L KHung Y TShammas N K. Physicochemical Treatment Processes.Totowa, NJ: Humana Press, 2005.

[19]

Alloway B J. Sources of Heavy Metals and Metalloids in Soils. In: Heavy metals in soils. Netherlands: Springer, 2013, 11–50

[20]

Srivastava PSingh BAngove M. Competitive adsorption behavior of heavy metals on kaolinite. Journal of Colloid and Interface Science2005290(1): 28–38

[21]

Zhang XLin SLu X QChen Z L. Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chemical Engineering Journal2010163(3): 243–248

[22]

Soleymanzadeh MArshadi MSalvacion J W LSalimiVahid F. A new and effective nanobiocomposite for sequestration of Cd(II) ions: nanoscale zerovalent iron supported on sineguelas seed waste. Chemical Engineering Research & Design201593: 696–709

[23]

Kim S AKamala-Kannan SLee K JPark Y JShea P JLee W HKim H MOh B T. Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chemical Engineering Journal2013217: 54–60 doi:10.1016/j.cej.2012.11.097

[24]

Fan TLiu YFeng BZeng GYang CZhou MZhou HTan ZWang X. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. Journal of Hazardous Materials2008160(2–3): 655–661 PMID:18455299 

[25]

Huang YYang CSun ZZeng GHe H. Removal of cadmium and lead from aqueous solutions using nitrilotriacetic acid anhydride modified ligno-cellulosic material. RSC Advances20155(15): 11475–11484

[26]

Cheng YYang CHe HZeng GZhao KYan Z. Biosorption of Pb(II) ions from aqueous solutions by waste biomass from biotrickling filters: kinetics, isotherms, and thermodynamics. Journal of Environmental Engineering2015142(9): C4015001

[27]

Attari MBukhari S SKazemian HRohani S. A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering20175(1): 391–399

[28]

Li X QZhang W X. Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C2007111(19): 6939–6946

[29]

Yan L GXu Y YYu H QXin X DWei QDu B. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. Journal of Hazardous Materials2010179(1–3): 244–250

[30]

Zhang YLi YDai CZhou XZhang W. Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): characterization and test in a two-stage system. Chemical Engineering Journal2014244: 218–226

[31]

Boparai H KJoseph MO’Carroll D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials2011186(1): 458–465

[32]

O’Carroll DSleep BKrol MBoparai HKocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources201351: 104–122

[33]

Calderon BFullana A. Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Research201583: 1–9 PMID:26115512 

[34]

Otte KSchmahl W WPentcheva R. Density functional theory study of water adsorption on FeOOH surfaces. Surface Science2012606(21): 1623–1632

[35]

Noubactep C. Characterizing the discoloration of methylene blue in Fe0/H2O systems. Journal of Hazardous Materials2009166(1): 79–87

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (555KB)

Supplementary files

FSE-17074-OF-MT_suppl_1

2592

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/