Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation

Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr

PDF(197 KB)
PDF(197 KB)
Front. Environ. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 2. DOI: 10.1007/s11783-017-0971-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation

Author information +
History +

Highlights

Tunisian clay has been successfully pillared with Al and Fe by microwave irradiation.

Microwave method reduces considerably the synthesis time and the water consumption.

AlFe-pillared clays are highly stable in the severe operating conditions of CWAO.

Oxidation takes place through a heterogeneous mechanism.

Microwave pillared-clays are good candidate for CWAO industrial water treatment.

Abstract

Microwave irradiation has been used to prepare Al, Fe-pillared clays from a natural Tunisian smectite from the El Hicha deposit (province of Gabes). Chemical analysis, XRD spectra and surface properties evidenced the success of pillaring process. The obtained solids present higher surface area and pore volume than conventionally prepared Al-Fe pillared clays. The main advantages of the microwave methodology are the considerable reduction of the synthesis time and the consumption of water. The microwave-derived Al-Fe pillared clays have been tested for catalytic wet air oxidation (CWAO) of phenol in a stirred tank at 160°C and 20 bar of pure oxygen pressure. These materials are efficient for CWAO of phenol and are highly stable despite the severe operating conditions (acidic media, high pressure, high temperature). The catalyst deactivation was also significantly hindered when compared to conventionally prepared clays. Al-Fe pillared clays prepared by microwave methodology are promising as catalysts for CWAO industrial water treatment.

Graphical abstract

Keywords

Water / Catalytic wet air oxidation / Pillared clays / Microwave / Phenol

Cite this article

Download citation ▾
Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation. Front. Environ. Sci. Eng., 2018, 12(1): 2 https://doi.org/10.1007/s11783-017-0971-1

References

[1]
Kim  K H, Ihm  S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review.  Journal of Hazardous Materials, 2011, 186(1): 16–34
CrossRef Pubmed Google scholar
[2]
Centi  G, Perathoner  S. Catalysis by layered materials: a review.  Microporous and Mesoporous Materials, 2008, 107(1–2): 3–15 
CrossRef Google scholar
[3]
Hajjaji  W, Pullar  R C, Labrincha  J A, Rocha  F. Aqueous acid orange 7 dye removal by clay and red mud mixes.  Applied Clay Science, 2016, 126: 197–206 
CrossRef Google scholar
[4]
Khankhasaeva  S Ts, Dambueva  D V, Dashinamzhilova  E Ts, Gil  A, Vicente  M A, Timofeeva  M N. Fenton degradation of sulfanilamide in the presence of Al,Fe-pillared clay: catalytic behavior and identification of the intermediates.  Journal of Hazardous Materials, 2015, 293: 21–29
CrossRef Pubmed Google scholar
[5]
Bel Hadjltaief  H, Ben Zina  M, Galvez  M E, Da Costa  P. Photo-Fenton oxidation of phenol over a Cu-doped Fe-pillared clay.  Comptes Rendus. Chimie, 2015, 18(10): 1161–1169 
CrossRef Google scholar
[6]
Ausavasukhi  A, Sooknoi  T. Catalytic activity enhancement by thermal treatment and re-swelling process of natural containing iron-clay for Fenton oxidation.  Journal of Colloid and Interface Science, 2014, 436: 37–40
CrossRef Pubmed Google scholar
[7]
Herney-Ramírez  J, Vicente  M A, Madeira  L M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review.  Applied Catalysis B: Environmental, 2010, 98(1–2): 10–26 
CrossRef Google scholar
[8]
Xu  A, Yang  M, Yao  H, Du  H, Sun  C. Rectorite as catalyst for wet air oxidation of phenol.  Applied Clay Science, 2009, 43(3–4): 435–438
CrossRef Google scholar
[9]
Ksontini  N, Najjar  W, Ghorbel  A. Al–Fe pillared clays: synthesis, characterization and catalytic wet air oxidation activity.  Journal of Physics and Chemistry of Solids, 2008, 69(5–6): 1112–1115 
CrossRef Google scholar
[10]
Guo  J, Al-Dahhan  M. Activity and stability of iron-containing pillared clay catalysts for wet air oxidation of phenol.  Applied Catalysis A, General, 2006, 299: 175–184 
CrossRef Google scholar
[11]
Guo  J, Al-Dahhan  M. Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst.  Chemical Engineering Science, 2005, 60(3): 735–746 
CrossRef Google scholar
[12]
Guo  J, Al-Dahhan  M. Catalytic wet oxidation of phenol by hydrogen peroxide over pillared clay catalyst.  Industrial & Engineering Chemistry Research, 2003, 42(12): 2450–2460 
CrossRef Google scholar
[13]
Sassi  H, Lafaye  G, Ben Amor  H, Gannouni  A, Jeday  M R, Barbier-Jr  J.Catalytic wet air oxidation of phenol over a Tunisian clay modified by Al and Fe. Applied Catalysis B: Environmental, 2017 (in Revision)
[14]
Mishra  A, Mehta  A, Sharma  M, Basu  S. Enhanced heterogeneous photodegradation of VOC and dye using microwave synthesized TiO2/clay nanocomposites: a comparison study of different type of clays.  Journal of Alloys and Compounds, 2017, 694: 574–580 
CrossRef Google scholar
[15]
Olaya  A, Moreno  S, Molina  R. Synthesis of pillared clays with Al13-Fe and Al13-Fe-Ce polymers in solid state assisted by microwave and ultrasound: characterization and catalytic activity.  Applied Catalysis A, General, 2009, 370(1–2): 7–15 
CrossRef Google scholar
[16]
Martínez-Ortiz M J, Fetter  G, Dominguez  J M, Melo-Banda  J A, Ramos-Gomez  R. Catalytic hydrotreating of heavy vacuum gas oil on Al- and Ti-pillared clays prepared by conventional and microwave irradiation methods.  Microporous and Mesoporous Materials, 2003, 58(2): 73–80 
CrossRef Google scholar
[17]
Fetter  G, Hernandez  V, Rodriguez  V, Valenzuela  M A, Lara  V H, Bosch  P. Effect of microwave irradiation time on the synthesis of zirconia-pillared clays.  Materials Letters, 2003, 57(5–6): 1220–1223
CrossRef Google scholar
[18]
Fetter  G, Heredia  G, Velazquez  L A, Maubert  A M, Bosch  P. Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions.  Applied Catalysis A, General, 1997, 162(1–2): 41–45 
CrossRef Google scholar
[19]
Fetter  G, Heredia  G, Maubert  A M, Bosch  P. Synthesis of Al-intercalated montmorillonites using microwave irradiation.  Journal of Materials Chemistry, 1996, 6(11): 1857–1858 
CrossRef Google scholar
[20]
Warrier  K G K, Mukundan  P, Ghosh  S K, Sivakumar  S, Damodaran  A D. Microwave drying of boehmite sol intercalated smectites.  Journal of Materials Science, 1994, 29(13): 3415–3418 
CrossRef Google scholar
[21]
Fatimah  I, Wijaya  K, Narsito . Microwave assisted preparation of TiO2/Al-pillared saponite for photocatalytic phenol photo-oxidation in aqueous solution.  Arabian Journal of Chemistry, 2015, 8(2): 228–232 
CrossRef Google scholar
[22]
de Andrés  A M, Merino  J, Galvan  J C, Ruiz-Hitzky  E. Synthesis of pillared clays assisted by microwaves.  Materials Research Bulletin, 1999, 34(4): 641–651 
CrossRef Google scholar
[23]
Olaya  A, Blanco  G, Bernal  S, Moreno  S, Molina  R. Synthesis of pillared clays with Al-Fe and Al-Fe-Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction.  Applied Catalysis B: Environmental, 2009, 93(1–2): 56–65 
CrossRef Google scholar
[24]
Mikulová  J, Rossignol  S, Barbier  J Jr, Mesnard  D, Kappenstein  C, Duprez  D. Ruthenium and platinum catalysts supported on Ce, Zr, Pr-O mixed oxides prepared by soft chemistry for acetic acid wet air oxidation.  Applied Catalysis B: Environmental, 2007, 72(1–2): 1–10 
CrossRef Google scholar
[25]
Li  H, Li  Y, Xiang  L, Huang  Q, Qiu  J, Zhang  H, Sivaiah  M V, Baron  F, Barrault  J, Petit  S, Valange  S. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation.  Journal of Hazardous Materials, 2015, 287: 32–41
CrossRef Pubmed Google scholar
[26]
Carriazo  J, Guélou  E, Barrault  J, Tatibouët  J M, Molina  R, Moreno  S. Catalytic wet peroxide oxidation of phenol by pillared clays containing Al-Ce-Fe.  Water Research, 2005, 39(16): 3891–3899
CrossRef Pubmed Google scholar
[27]
Gil  A, Korili  S A, Trujillano  R, Vicente  M A. A review on characterization of pillared clays by specific techniques.  Applied Clay Science, 2011, 53(2): 97–105
CrossRef Google scholar
[28]
Vicente M A, Rives V, Trujillano R, Gil A, Korili S A. Comment on “iron oxide-pillared clay catalyzed the synthesis of acetonides from epoxides”, by P. Trikittiwong, N. Sukpirom, S. Shimazu, W. Chavasiri, Catalysis Communications 54 (2014) 104–107 (doi: 10.1016/j.catcom.2014.05.002). Catalysis Communications, 2015, 61: 121–122
[29]
Zhou  S, Zhang  C, Hu  X, Wang  Y, Xu  R, Xia  C, Zhang  H, Song  Z. Catalytic wet peroxide oxidation of 4-chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-pillared clays: sensitivity, kinetics and mechanism.  Applied Clay Science, 2014, 95: 275–283 
CrossRef Google scholar
[30]
Luo  M, Bowden  D, Brimblecombe  P. Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2.  Applied Catalysis B: Environmental, 2009, 85(3–4): 201–206
CrossRef Google scholar
[31]
Caudo  S, Centi  G, Genovese  C, Perathoner  S. Copper- and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive oil milling production.  Applied Catalysis B: Environmental, 2007, 70(1–4): 437–446 
CrossRef Google scholar
[32]
Sanabria  N R, Ávila  P, Yates  M, Rasmussen  S B, Molina  R, Moreno  S. Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites.  Applied Clay Science, 2010, 47(3–4): 283–289 
CrossRef Google scholar
[33]
Carriazo  J G, Martinez  L M, Odriozola  J A, Moreno  S, Molina  R, Centeno  M A. Gold supported on Fe, Ce, and Al pillared bentonites for CO oxidation reaction.  Applied Catalysis B: Environmental, 2007, 72(1–2): 157–165 
CrossRef Google scholar
[34]
Galeano  L A, Gil  A, Vicente  M A. Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe–Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange.  Applied Catalysis B: Environmental, 2010, 100(1–2): 271–281 
CrossRef Google scholar
[35]
Carriazo  J, Guélou  E, Barrault  J, Tatibouët  J M, Molina  R, Moreno  S. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity.  Catalysis Today, 2005, 107–108: 126–132 
CrossRef Google scholar

Acknowledgements

The authors gratefully acknowledge the financial support from Tunisian Chemical Group and the Project Partenariats Hubert Curien (PHC-Maghreb).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(197 KB)

Accesses

Citations

Detail

Sections
Recommended

/