Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification

Ming Zeng , Ping Li , Nan Wu , Xiaofang Li , Chang Wang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 15

PDF (335KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 15 DOI: 10.1007/s11783-017-0961-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification

Author information +
History +
PDF (335KB)

Abstract

CD enhances the hydrophilic property of traditional PVA-SA gel solution.

CD increases the density of embedded microorganism and micro porosity of bead.

CD makes the maximum endogenous respiration rate being high.

30-1.7-CD contributes the highest total inorganic nitrogen removal efficiency.

Comamonas sp. mainly realize the simultaneous nitrification and denitrification.

A novel microorganism embedding material was prepared to enhance the biological nitrogen removal through simultaneous nitrification and denitrification. Polyvinyl alcohol (PVA), sodium alginate (SA) and cyclodextrin (CD) were used to compose gel bead with embedded activated sludge. The effects of temperature, CD addition and concentrations of PVA and SA on nitrogen removal were evaluated. Results show that the gel bead with CD addition at 30°C contributed to the highest nitrogen removal efficiency and nitrogen removal rate of 85.4% and 2.08 mg·(L·h)1, respectively. Meanwhile, negligible NO3 and NO2 were observed, proving the occurrence of simultaneous nitrification and denitrification. The High-Throughput Sequencing confirms that the microbial community mainly contained Comamonadaceae in the proportion of 61.3%. Overall, CD increased gel bead’s porosity and resulted in the high specific endogenous respiration rate and high nitrogen removal efficiency, which is a favorable additional agent to the traditional embedding material.

Graphical abstract

Keywords

Immobilization technology / Nitrogen removal / Cyclodextrin / Microbial community / Wastewater treatment

Cite this article

Download citation ▾
Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification. Front. Environ. Sci. Eng., 2017, 11(6): 15 DOI:10.1007/s11783-017-0961-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Paredes DKuschk PMbwette T S AStange FMüller R AKöser H. New aspects of microbial nitrogen transformations in the context of wastewater treatment – A review. Engineering in Life Sciences20077(1): 13–25

[2]

Jie FTao TJing ZYou G L. Performance evaluation of a modified anaerobic/anoxic/oxic (A2/O) process treating low strength wastewater. Desalination2009249(2): 822–827

[3]

Jun L IPeng YGuowei G UWei S. Factors affecting simultaneous nitrification and denitrification in an SBBR treating domestic wastewater. Frontiers of Environmental Science & Engineering in China20071(2): 246–250

[4]

Zhang PZhou Q. Simultaneous nitrification and denitrification in activated sludge system under low oxygen concentration. Frontiers of Environmental Science & Engineering in China20071(1): 49–52

[5]

Aoi YShiramasa YKakimoto ETsuneda SHirata ANagamune T. Single-stage autotrophic nitrogen-removal process using a composite matrix immobilizing nitrifying and sulfur-denitrifying bacteria. Applied Microbiology and Biotechnology200568(1): 124–130

[6]

Santos V ATramper JWijffels R H. Simultaneous nitrification and denitrification using immobilized microorganisms. Biomaterials, Artificial Cells, and Immobilization Biotechnology199321(3): 317–322

[7]

Quan L MKhanh PHira DFujii TFurukawa K. Reject water treatment by improvement of whole cell anammox entrapment using polyvinyl alcohol/alginate gel. Biodegradation201122(6): 1155–1167

[8]

Zhu G LHu Y YWang Q R. Nitrogen removal performance of anaerobic ammonia oxidation co-culture immobilized in different gel carriers. Water Science and Technology200959(12): 2379–2386

[9]

Duan X M. The Anammox activity enhancement by low intensity ultrasound and co-immobilized with partial nitrifying sludge for autotrophic nitrogen removal. Dissertation for the Doctoral Degree. Dalian: Dalian University of Technology, 2012

[10]

Hu J. Biodegradation of di-n-butyl phthalate in wastewater by immobilized Micrococcus sp. Dissertation for the Doctoral Degree. Beijing: China University of Geosciences, 2014

[11]

Kozlowski C AWa S. Cyclodextrin polymers: recent applications. In: Matyjaszewski K, ed. Encyclopedia of Polymer Science and Technology. New York: John Wiley and Sons, Inc., 2013

[12]

Oishi KMoriuchi A. Removal of dissolved estrogen in sewage effluents by β-cyclodextrin polymer. Science of the Total Environment2010409(1): 112–115

[13]

Walter W G. APHA standard methods for the examination of water and wastewater. American Journal of Public Health and the Nation’s Health1961

[14]

Bai XYe ZLi YYang LQu YYang X. Preparation and characterization of a novel macroporous immobilized micro-organism carrier. Chemistry of Materials201012(3): 665–670

[15]

Cao G MZhao Q XSun X BTong Z. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells. Enzyme and Microbial Technology200230(1): 49–55

[16]

Isaka KKimura YOsaka TTsuneda S. High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria. Water Research201246(16): 4941–4948

[17]

Bano SMahmood AKim S JLee K H. Chlorine resistant binary complexed NaAlg/PVA composite membrane for nanofiltration. Separation and Purification Technology2014137: 21–27

[18]

Spanjers HVanrolleghem P. Respirometry as a tool for rapid characterization of wastewater and activated sludge. Water Science and Technology199531(2): 105–114

[19]

Zhang L SWu W ZWang J L. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. Journal of Environmental Sciences (China)200719(11): 1293–1297

[20]

Charley R C. European Patent, 0 346 545, 1995–09–13

[21]

Li CZheng C XLi J. Synthesis and application of -cyclodextrin modified reticulate polyurethane foam. In: Sixth Annual Meeting of Water Treatment Chemicals Industry of China Fine Chemical Association 2010, Kunming, China (in Chinese)

[22]

Quast CPruesse EYilmaz PGerken JSchweer TYarza PPeplies JGlöckner F O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research201341(Database issue): D590–D596

[23]

Cole J RWang QCardenas EFish JChai BFarris R JKulam-Syed-Mohideen A SMcGarrell D MMarsh TGarrity G MTiedje J M. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research200937(Database issue): D141–D145

[24]

DeSantis T ZHugenholtz PLarsen NRojas MBrodie E LKeller KHuber TDalevi DHu PAndersen G L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology200672(7): 5069–5072

[25]

Sadaie TSadaie ATakada MHamano KOhnishi JOhta NMatsumoto KSadaie Y. Reducing sludge production and the domination of Comamonadaceae by reducing the oxygen supply in the wastewater treatment procedure of a food-processing factory. Bioscience, Biotechnology, and Biochemistry200771(3): 791–799

[26]

Li A JYang S FLi X YGu J D. Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Research200842(13): 3552–3560

[27]

Li J TJi S LLiu Z PQin Z PLiu YYang Y Y. Analysis of bacterial composition of aerobic granular sludge with 16S rDNA clone library. Research of Environemtal Science200922(10): 1218–1223 (in Chinese)

[28]

Patureau DZumstein EDelgenes J PMoletta R. Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microbial Ecology200039(2): 145–152

[29]

Zhong FWu JDai YYang LZhang ZCheng SZhang Q. Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration. Applied Microbiology and Biotechnology201599(3): 1499–1512

[30]

Wu YShukal SMukherjee MCao B. Involvement in denitrification is beneficial to the biofilm lifestyle of Comamonas testosteroni: a mechanistic study and its environmental implications. Environmental Science & Technology201549(19): 11551–11559

[31]

Chen QNi J. Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. Journal of Industrial Microbiology201138(9): 1305–1310

[32]

Bock ESchmidt IStüven RZart D. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiology1995163(1): 16–20

[33]

Huang WWang WShi WLei ZZhang ZChen RZhou B. Use low direct current electric field to augment nitrification and structural stability of aerobic granular sludge when treating low COD/NH4-N wastewater. Bioresource Technology2014171(1): 139–144

[34]

Calli BTas NMertoglu BInanc BOzturk I. Molecular analysis of microbial communities in nitrification and denitrification reactors treating high ammonia leachate. Journal of Environmental Science & Health Part A200338(10): 1997–2007

[35]

Sun YLi AZhang XMa F. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13. Applied Microbiology and Biotechnology201599(7): 3243–3248

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (335KB)

Supplementary files

FSE-17062-OF-ZM_suppl_1

2026

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/