Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control

Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying

PDF(694 KB)
PDF(694 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 11. DOI: 10.1007/s11783-017-0952-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control

Author information +
History +

Highlights

GSI systems perform very well for low intensity and short duration events.

GSI systems have the worst performance for high intensity events.

GSI systems are capable for CSO control in long-term control strategy.

GSI systems are not suitable for the urban flooding control.

Abstract

Stimulated by the recent USEPA’s green stormwater infrastructure (GSI) guidance and policies, GSI systems have been widely implemented in the municipal area to control the combined sewer overflows (CSOs), also known as low impact development (LID) approaches. To quantitatively evaluate the performance of GSI systems on CSO and urban flooding control, USEPA-Stormwater Management Model (SWMM) model was adopted in this study to simulate the behaviors of GSI systems in a well-developed urban drainage area, PSW45, under different circumstances. The impact of different percentages of stormwater runoff transported from impervious surfaces to the GSI systems on CSO and urban flooding control has also been investigated. Results show that with current buildup, GSI systems in PSW45 have the best performance for low intensity and short duration events on both volume and peak flow reductions, and have the worst performance for high intensity and long duration events. Since the low intensity and short duration events are dominant from a long-term perspective, utilizing GSI systems is considered as an effective measure of CSO control to meet the long-term control strategy for PSW45 watershed. However, GSI systems are not suitable for the flooding control purpose in PSW45 due to the high occurrence possibility of urban flooding during or after high intensity events where GSI systems have relatively poor performance no matter for a short or long duration event.

Graphical abstract

Keywords

Green stormwater infrastructure (GSI) / Combined sewer overflows (CSOs) / Urban flooding / Low impact development (LID) / Stormwater Management Model (SWMM)

Cite this article

Download citation ▾
Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying. Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control. Front. Environ. Sci. Eng., 2017, 11(4): 11 https://doi.org/10.1007/s11783-017-0952-4

References

[1]
Qin H P, Li Z X, Fu G. The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 2013, 129: 577–585 
CrossRef Pubmed Google scholar
[2]
Schmitt T G, Thomas M, Ettrich N. Analysis and modeling of flooding in urban drainage systems. Journal of Hydrology (Amsterdam), 2004, 299(3–4): 300–311
CrossRef Google scholar
[3]
Chen B, Liu J, She N, Xu K. Optimization of low impact development facilities in Beijing CITIC complex. In: Proceedings of International Low Impact Development Conference 2015, 2015, 342–351
[4]
Common Wealth of Pennnsylvania Department of Environmental Protection. Pennsylvania Code, Title 25 Environmental Protection, Chapter 93 Water Quality Standards Version: (324889) No. 388. 2007
[5]
Pensylvania Department of Environmental Protection. Pennsylvania Integrated Water Quality Monitoring and Assessment Report, 2004
[6]
Philadelphia Water Department. The City of Philadelphia’s Program for Combined Sewer Overflow Control—Long Term Control Plan Update, 2009
[7]
Kambites C, Owen S. Renewed prospects for green infrastructure planning in the UK. Planning Practice and Research, 2006, 21(4): 483–496 
CrossRef Google scholar
[8]
MartyM, RustyT. Low Impact Development Manual for Arkansas, 2010.
[9]
Myers R D, Smullen J, Cromwell J, Raucher B, Cammarata M. Balancing green and traditional infrastructure for sustainable urban wet weather management. SIWW Paper, 2009
[10]
Robert N S, Long G, Jaffee J. Assessment of the economic impact of additional combined sewer overflow controls in the massachusetts water resource authority service area. Analysis Group Incorporated, 2004, 13
[11]
U.S. Environmental Protection Agency (US EPA). Combined sewer overflow (CSO) control policy. Federal Register, 1994, 75(59): 18688–18698
[12]
Pieschek R L, Carpenter D D. Modeling green infrastructure in the support of the re-development of Detroit’s neighborhoods. In: Proceedings of World Environmental and Water Resources Congress 2016, 247–254.
[13]
Lucas W C, Sample D J. Reducing combined sewer overflows by using outlet controls for Green Stormwater Infrastructure: case study in Richmond, Virginia. Journal of Hydrology (Amsterdam), 2015, 520: 473–488
CrossRef Google scholar
[14]
Liu W, Chen W, Peng C. Assessing the effectiveness of green infrastructures on urban flooding reduction: a community scale study. Ecological Modelling, 2014, 291: 6–14
CrossRef Google scholar
[15]
McCutcheon M, Wride D, Reinicke J. An evaluation of modeling green infrastructure using LID controls. Journal of Water Management Modeling, R245–12, 2012, 193–205
[16]
Pitt R, Voorhees J, Clark S. Integrating green infrastructure into a combined sewer service area model. In: Proceedings of World Environmental and Water Resources Congress 2010. Challenges of Change, 2010, 2950–2963.
[17]
York C, Goharian E, Burian S J. Impacts of large-scale stormwater green infrastructure implementation and climate variability on receiving water response in the Salt Lake City area. American Journal of Environmental Sciences, 2015, 11(4): 278–292
CrossRef Google scholar
[18]
Jayasooriya V M, Ng A W M. Tools for modeling of stormwater management and economics of green infrastructure practices: a review. Water, Air, and Soil Pollution, 2014, 225(8): 2055-2061 
CrossRef Google scholar
[19]
Huber W C, Dickinson R E. Stormwater management model user's manual. Version 4, EPA/600/3–88/001a (NTIS PB88–236641/AS). Athens, GA: Environmental Protection Agency, 1988
[20]
USEPA. Computer tools for sanitary sewer system capacity analysis and planning. EPA/600/R-07/111, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 2007
[21]
USEPA. Storm water management model reference manual volume I—Hydrology (Revised), EPA/600/R-15/162A, U.S. Environmental Protection Agency, 2016
[22]
Zimmer A, Schmidt A, Ostfeld A, Minsker B. Computationally implicit hydraulics for real-time combined sewer overflow modeling and decision support. In: Proceedings of World Environmental and Water Resources Congress 2012, 295–304
[23]
Abi Aad M, Suidan M T, Shuster W D. Modeling techniques of best management practices: rain barrels and rain gardens using EPA SWMM-5. Journal of Hydrologic Engineering, 2009, 15(6): 434–443 
CrossRef Google scholar
[24]
Zhang S, Guo Y. SWMM simulation of the storm water volume control performance of permeable pavement systems. Journal of Hydrologic Engineering, 2014, 20(8): 06014010 
CrossRef Google scholar
[25]
Zhang G, Hamlett J,Saravanapavan T.Representation of low impact development scenarios in SWMM, Journal of Water Management Modeling, 2010, R236–12, 183–196 doi: 10.14796/JWMM.R236-12.
[26]
Ormsbee L. Rainfall Disaggregation Model for Continuous Hydrologic Modeling. Journal of Hydraulic Engineering, 1989, 115(4), 507–525
[27]
Sun N, Hall M, Hong B, Zhang L. Impact of SWMM catchment discretization: Case study in Syracuse, New York. Journal of Hydrologic Engineering, 2012, 19(1): 223–234
CrossRef Google scholar
[28]
Edwards T K, Glysson G D. Field Methods for Measurement of Fluvial Sediment. U.S. Geological Survey Open-File Report, 1988, 118, 86–531
[29]
Rawls W J, Brakensiek D L, Miller N. Green-Ampt infiltration parameters from soils data. Journal of Hydraulic Engineering, 1983, 109(1): 62–70
CrossRef Google scholar
[30]
Feng Y, Burian S, Pomeroy C. ET influence on urban stormwater runoff estimation. In: ASCE Proceedings of World Environmental and Water Resources Congress 2013, 2013, 154–163
[31]
Muleta M K. Uncertainty analysis and calibration of SWMM using a formal, Bayesian methodology. In: Proceedings of World Environmental and Water Resources Congress 2012, 2012, 562–568
[32]
Barco J, Wong K M, Stenstrom M K. Automatic calibration of the U.S. EPA SWMM Model for a large urban catchment. Journal of Hydraulic Engineering, 2008, 134(4): 466–474
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer–Verlag Berlin Heidelberg
AI Mindmap
PDF(694 KB)

Accesses

Citations

Detail

Sections
Recommended

/