Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions

Ruifen Liu , Elizabeth Fassman-Beck

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 10

PDF (425KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 10 DOI: 10.1007/s11783-017-0951-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions

Author information +
History +
PDF (425KB)

Abstract

A bioretention with internal water storage zone enhances hydrologic performance.

A medium with marine sand is better at delaying drainage than one with pumice sand.

In column studies, air entrapment affects filling of an internal water storage zone.

Medium-specific characteristics are recommended for SWMM v5.1.11 model estimations.

Hydrologic performance of bioretention systems is significantly influenced by the media composition and underdrain configuration. This research measured hydrologic performance of column-scale bioretention systems during a synthetic design storm of 25.9 mm, assuming a system area:catchment area ratio of 5%. The laboratory experiments involved two different engineered media and two different drainage configurations. Results show that the two engineered media with different sand aggregates were able to retain about 36% of the inflow volume with free drainage configuration. However, the medium with marine sand is better at delaying the occurrence of drainage than the one with pumice sand, denoting the better detention ability of the former. For both engineered media, an underdrain configuration with internal water storage (IWS) zone lowered drainage volume and peak drainage rate as well as delayed the occurrence of drainage and peak drainage rate, as compared to a free drainage configuration. The USEPA SWMM v5.1.11 model was applied for the free drainage configuration case, and there is a reasonable fit between observed and modeled drainage-rates when media-specific characteristics are available. For the IWS drainage configuration case, air entrapment was observed to occur in the engineered medium with marine sand. Filling of an IWS zone is most likely to be influenced by many factors, such as the structure of the bioretention system, medium physical and hydraulic properties, and inflow characteristics. More research is needed on the analysis and modeling of hydrologic process in bioretention with IWS drainage configuration.

Graphical abstract

Keywords

Bioretention / Hydrologic process / Underdrain configuration / SWMM / Modeling

Cite this article

Download citation ▾
Ruifen Liu, Elizabeth Fassman-Beck. Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions. Front. Environ. Sci. Eng., 2017, 11(4): 10 DOI:10.1007/s11783-017-0951-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davis A PHunt W FTraver R GClar M. Bioretention technology: overview of current practice and future needs. Journal of Environmental Engineering2009135(3): 109–117

[2]

Roy-Poirier AChampagne PFilion Y. Review of bioretention system research and design: past, present, and future. Journal of Environmental Engineering2010136(9): 878–889

[3]

Meng YWang HChen JZhang S. Modelling hydrology of a single bioretention system with HYDRUS-1D. The Scientific World Journal20142014(3–4): 521047

[4]

Jia HWang XTi CZhai YField RTafuri A NCai HYu S L. Field monitoring of a LID-BMP treatment train system in China. Environmental Monitoring and Assessment2015187(6): 1–18

[5]

Jia HYao HYu S L. Advances in LID BMPs research and practice for urban runoff control in China. Frontiers of Environmental Science & Engineering20137(5): 709–720

[6]

Brown R AHunt W F. Underdrain configuration to enhance bioretention exfiltration to reduce pollutant loads. Journal of Environmental Engineering2011137(11): 1082–1091

[7]

Sharkey L J. The performance of bioretention areas in North Carolina: a study of water quality, water quantity, and soil media. Thesis for Master Degree. Raleigh, NC: North Carolina State University2006

[8]

Winston R JDorsey J DHunt W F. Quantifying volume reduction and peak flow mitigation for three bioretention cells in clay soils in northeast Ohio. Science of the Total Environment2016553: 83–95

[9]

Li HSharkey L JHunt W FDavis A P. Mitigation of impervious surface hydrology using bioretention in North Carolina and Maryland. Journal of Hydrologic Engineering200914(4): 407–415

[10]

Rossman L A. Storm Water Management Model User’s Manual, Version 5.0. Cincinnati, United States: Water Supply and Water Resources Division, National Risk Management Research Laboratory, United States Environmental Protection Agency2010

[11]

Torbati S S. Pollutant removal evaluation and hydrologic characterization by continuous simulation for a concrete lined bioretention. Thesis for Master Degree. Auckland, New Zealand: University of Auckland2010

[12]

Liu RFassman-Beck E. Effect of composition on basic properties of engineered media for living roofs and bioretention. Journal of Hydrologic Engineering201621(6): 06016002

[13]

Fassman-Beck EWang SSimcock RLiu R. Assessing the effects of bioretention’s engineered media composition and compaction on hydraulic conductivity and water holding capacity. Journal of Sustainable Water in the Built Environment20151(4): 04015003

[14]

Liu RFassman-Beck E. Hydrologic response of engineered media in living roofs and bioretention to large rainfalls: experiments and modeling. Hydrological Processes201731(3): 556–572

[15]

National Institute of Water and Atmospheric Research. High Intensity Rainfall System V3. Available online at 160;(accessed May 29, 2013)

[16]

Dooge J C I. The rational method for estimating flood peaks. Engineering1957184(1): 311–313, 374–377

[17]

American Society for Testing and Materials. Standard Test Methods for Measurement of Hydraulic Conductivity of Unsaturated Soils: ASTM D7664–10. West Conchohocken, PA: ASTM International2010

[18]

Liu R. Infiltration models for engineered media in living roofs and bioretention. Dissertation for the Doctoral Degree. Auckland, New Zealand: University of Auckland2016

[19]

American Society for Testing and Materials. Standard Test Method for Permeability of Granular Soils (Constant Head): ASTM D2434–68. West Conchohocken, PA: ASTM International2006

[20]

Nash J ESutcliffe J V. River flow forecasting through conceptual models: Part I — A discussion of principles. Journal of Hydrology (Amsterdam)197010(3): 282–290

[21]

Jain S KSudheer K P. Fitting of hydrologic models: a close look at the Nash–Sutcliffe index. Journal of Hydrologic Engineering200813(10): 981–986

[22]

Weeks E P. The Lisse effect revisited. Ground Water200240(6): 652–656

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (425KB)

2754

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/