Performance evaluation of circulating fluidized bed incineration of municipal solid waste by multivariate outlier detection in China

Hua Tao, Pinjing He, Yi Zhang, Wenjie Sun

PDF(564 KB)
PDF(564 KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (6) : 4. DOI: 10.1007/s11783-017-0945-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Performance evaluation of circulating fluidized bed incineration of municipal solid waste by multivariate outlier detection in China

Author information +
History +

Highlights

Reducing load change frequency is more important than magnitude for performance.

Overloading is more often than underloading. The frequent overloading is 0% to 30%.

Heterogeneous property of MSW can be magnified by the frequent load changes.

Appropriate MSW storage capacity may buffer and reduce the frequency of load change.

Abstract

This first nationwide survey was conducted to evaluate the overall performance of the circulating fluidized bed (CFB) incineration of municipal solid waste (MSW) in 2014-2015 in China. Total 23 CFB incineration power plants were evaluated. The data for monthly average flue gas emission of particles, CO, NOx, SO2 and HCl were collected over 12 consecutive months. The data were analyzed to assess the overall performance of CFB incineration by applying the Mahalanobis distance as a multivariate outlier detection method. Although the flue gas emission parameters had met the Chinese national emission standards, there were 11 total outliers (abnormal behavior) detected in 6 out of 23 CFB incineration power plants from the perspective of the MSW incineration performance. The results demonstrate that it is more important for a better performance of CFBs to reduce the frequencies of the MSW load changes, rather than the magnitudes of the MSW load changes, particularly reducing the frequencies in the range of 10% and more of the load changes, under the same and stable conditions. Furthermore, the overloading occurs more often than the underloading during the operation of the CFB incineration power plants in China. The frequent overloading is 0% to 30% of the designed capacity. To achieve the stable performance of CFBs in practice, an appropriately designed MSW storage capacity is suggested to build in a plant to buffer and reduce the frequency of the load changes.

Graphical abstract

Keywords

Municipal solid waste / Incineration / Circulating fluidized bed / Load change / Multivariate outlier detection

Cite this article

Download citation ▾
Hua Tao, Pinjing He, Yi Zhang, Wenjie Sun. Performance evaluation of circulating fluidized bed incineration of municipal solid waste by multivariate outlier detection in China. Front. Environ. Sci. Eng., 2017, 11(6): 4 https://doi.org/10.1007/s11783-017-0945-3

References

[1]
Ministry of Housing and Urban-rural Development of China. China Urban Construction Statistical Yearbook 2014.Beijing: China Statistics Press, 2015
[2]
Rink K K, Kozinski J A, Lighty J S, Lu Q. Design and construction of a circulating fluidized bed combustion facility for use in studying the thermal remediation of wastes. Review of Scientific Instruments, 1994, 65(8): 2704–2713
CrossRef Google scholar
[3]
Van Caneghem J, Brems A, Lievens P, Block C, Billen P, Vermeulen I, Dewil R, Baeyens J, Vandecasteele C. Fluidized bed waste incinerators: Design, operational and environmental issues. Progress in Energy and Combustion Science, 2012, 38(4): 551–582
CrossRef Google scholar
[4]
Wen W, Wei D S, Zhuang Y M. Investigation on gasificiation of municipal waste garbage. Gas & Heating, 1992, 12(4): 4–10 (in Chinese)
[5]
Wang B Y, Sheng H Z, Qi L Q, Tian W D. Rotating fluidized bed combustor for municipal solid waste and numerical analysis on cold flow field. Mechanics and Practice, 1994, 16(4): 40–43 (in Chinese)
[6]
Cen K F, Li X D, Li Y X, Yan J H, Shen Y L, Liang S R, Ni M J. Experimental study of a finned tubes impact gas-solid separator for CFB boilers. Chemical Engineering Journal, 1997, 66(3): 159– 169
CrossRef Google scholar
[7]
National People’s Congress of China (NPC). NPC Standing Committee Inspecting Enforcement Report on the Law of Environmental Pollution Prevention Caused by Solid Waste. 2003. Available online at http://www.npc.gov.cn/wxzl/gongbao/2003-08/12/content_5318892.htm-2016.05.10 (accessed May 4, 2016)
[8]
Lang G, Xu Y. Anti-incinerator campaigns and the evolution of protest politics in China. Environmental Politics, 2013, 22(5): 832–848
CrossRef Google scholar
[9]
Johnson T.The health factor in anti-waste incinerator campaigns in Beijing and Guangzhou.  The China Quarterly, 2013, 214: 356–375
[10]
Sun Y. Facilitating generation of local knowledge using a collaborative initiator: a NIMBY case in Guangzhou, China. Habitat International, 2015, 46: 130–137
CrossRef Google scholar
[11]
Tian W D, Wei X L, Li J, Sheng H Z. Internal circulating fluidized bed incineration system and design algorithm. Journal of Environmental Sciences, 2001, 13(2): 185–188
Pubmed
[12]
Dong C Q, Jin B S, Zhong Z P, Lan J X. Tests on co-firing of municipal solid waste and coal in a circulating fluidized bed. Energy Conversion and Management, 2002, 43(16): 2189–2199
CrossRef Google scholar
[13]
Jones F, Niklasson F, Lindberg D, Hupa M. Effects of reduced bed temperature in laboratory- and full-scale fluidized-bed foilers: particle, deposit, and ash chemistry. Energy & Fuels, 2013, 27(8): 4999–5007
CrossRef Google scholar
[14]
Lu L, Ismail T M, Jin Y Q, Abd El-Salam M, Yoshikawa K. Numerical and experimental investigation on co-combustion characteristics of hydrothermally treated municipal solid waste with coal in a fluidized bed. Fuel Processing Technology, 2016, 154: 52–65
CrossRef Google scholar
[15]
Deng W, Yan J, Li X, Wang F, Chi Y, Lu S. Emission characteristics of dioxins, furans and polycyclic aromatic hydrocarbons during fluidized-bed combustion of sewage sludge. Journal of Environmental Sciences, 2009, 21(12): 1747–1752
CrossRef Pubmed Google scholar
[16]
Zhang Y G, Li Q H, Meng A H, Chen C H. Carbon monoxide formation and emissions during waste incineration in a grate-circulating fluidized bed incinerator. Waste Management & Research, 2011, 29(3): 294–308
CrossRef Pubmed Google scholar
[17]
Zhang L, Su X W, Zhang Z X, Liu S M, Xiao Y X, Sun M M, Su J X. Characterization of fly ash from a circulating fluidized bed incinerator of municipal solid waste. Environmental Science and Pollution Research International, 2014, 21(22): 12767–12779
CrossRef Pubmed Google scholar
[18]
Soria J, Gauthier D, Flamant G, Rodriguez R, Mazza G. Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD. Waste Management, 2015, 43: 176–187
CrossRef Pubmed Google scholar
[19]
Li Y J, Wang H H, Jiang L, Zhang W, Li R D, Chi Y. HCl and PCDD/Fs emission characteristics from incineration of source-classified combustible solid waste in fluidized bed. RSC Advances, 2015, 5(83): 67866–67873
CrossRef Google scholar
[20]
Su X W, Zhang L, Xiao Y X, Sun M M, Gao X, Su J X. Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions. Powder Technology, 2015, 286: 9–15
CrossRef Google scholar
[21]
Qiu Q L, Jiang X G, Lv G J, Lu S Y, Ni M J. Stabilization of heavy metals in municipal solid waste incineration fly ash in circulating fluidized bed by microwave-assisted hydrothermal treatment with additives. Energy & Fuels, 2016, 3(9): 7588–7595
CrossRef Google scholar
[22]
Shao Y, Hou H B, Wang G X, Wan S, Zhou M. Characteristics of the stabilized/solidified municipal solid wastes incineration fly ash and the leaching behavior of Cr and Pb. Frontiers of Environmental Science & Engineering, 2016, 10(1): 192–200
CrossRef Google scholar
[23]
Phoungthong K, Xia Y, Zhang H, Shao L M, He P J. Leaching toxicity characteristics of municipal solid waste incineration bottom ash. Frontiers of Environmental Science & Engineering, 2016, 10(2): 399–411
CrossRef Google scholar
[24]
Wu B R, Wang D Y, Chai X L, Takahashi F, Shimaoka T. Characterization of chlorine and heavy metals for the potential recycling of bottom ash from municipal solid waste incinerators as cement additives. Frontiers of Environmental Science & Engineering, 2016, 10(4): 8
CrossRef Google scholar
[25]
Han Y, Xie H T, Liu W B, Li H F, Wang M J, Chen X B, Liao X, Yan N. Assessment of pollution of potentially harmful elements in soils surrounding a municipal solid waste incinerator, China. Frontiers of Environmental Science & Engineering, 2016, 10(6): 7
CrossRef Google scholar
[26]
Nixon J D, Dey P K, Ghosh S K, Davies P A. Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy, 2013, 59: 215–223
CrossRef Google scholar
[27]
Zhang L X, Li P W, Mao J, Ma F, Ding X X, Zhang Q. An enhanced Monte Carlo outlier detection method. Journal of Computational Chemistry, 2015, 36(25): 1902–1906
CrossRef Pubmed Google scholar
[28]
Ngan H Y T, Yung N H C, Yeh A G O. Outlier detection in traffic data based on the Dirichlet process mixture model. IET Intelligent Transport Systems, 2015, 9(7): 773–781
CrossRef Google scholar
[29]
Ben-Gal I. Outlier detection. In: Maimon O, Rockach L, eds. Data mining and knowledge discovery handbook: a complete guide for practitioners and researchers. Kluwer Academic Publishers, 2005, 1–16
[30]
Torres J M, Garcia Nieto P J, Alejano L, Reyes A N. Detection of outliers in gas emissions from urban areas using functional data analysis. Journal of Hazardous Materials, 2011, 186(1): 144–149
CrossRef Pubmed Google scholar
[31]
Martínez J, Saavedra A, Garcia-Nieto P J, Pineiro J I, Iglesias C, Taboada J, Sancho J, Pastor J. Air quality parameters outliers detection using functional data analysis in the Langreo urban area (Northern Spain). Applied Mathematics and Computation, 2014, 241: 1–10
CrossRef Google scholar
[32]
Lehmann R. A new approach for assessing the state of environment using isometric log-ratio transformation and outlier detection for computation of mean PCDD/F patterns in biota. Environmental Monitoring and Assessment, 2015, 187(1): 4149
CrossRef Pubmed Google scholar
[33]
R Core Team. R: A language and environment for statistical computing R-3.2.4. 2016. Available online at https://cran.r-project.org/bin/windows/base/old/3.2.4/ (accessed April 2, 2016)
[34]
Desroches-Ducarne E, Marty E, Martin G, Delfosse L. Co-combustion of coal and municipal solid waste in a circulating fluidized bed. Fuel, 1998, 77(12): 1311–1315
CrossRef Google scholar

Acknowledgements

The authors thank the Chinese colleagues, members of China Association of Urban Environmental Sanitation (CAUES), and Tian Yu to offer the data and assistance for this study.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer–Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(564 KB)

Accesses

Citations

Detail

Sections
Recommended

/