Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater

Xiaoyan Song , Rui Liu , Lujun Chen , Baogang Dong , Tomoki Kawagishi

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 13

PDF (499KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 13 DOI: 10.1007/s11783-017-0941-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater

Author information +
History +
PDF (499KB)

Abstract

The mass balance analysis of organic carbon were applied.

The IASBR displays higher ratios of denitrificated organic carbon.

The effects of anoxic stress duration on nitrification activity were evaluated.

The anoxia time of 40–80 min achieves more stable nitritation.

The intermittent aeration strategy improved the removal of fluorescent substance.

An intermittently aerated sequencing batch reactor (IASBR) and a traditional sequencing batch reactor (SBR) were parallelly constructed to treat digested piggery wastewater, which was in high NH4+-N concentration but in a low COD/TN ratio. Their pollutant removal performance was compared under COD/TN ratios of 1.6–3.4 d and hydraulic retention times of 5–3 d. The results showed that the IASBR removed TN, NH4+-N and TOC more efficiently than the SBR. The average removal rates of TN, NH4+-N and TOC were 83.1%, 96.5%, and 89.0%, respectively, in the IASBR, significantly higher than the corresponding values of 74.8%, 82.0%, and 86.2% in the SBR. Mass balance of organic carbon revealed that the higher TN removal in the IASBR might be attributed to its efficient utilization of the organic carbon for denitrification, since that 48.7%–52.2% of COD was used for denitrification in the IASBR, higher than the corresponding proportion of 43.1%–47.4% in the SBR. A pre-anoxic process in the IASBR would enhance the ammonium oxidation while restrict the nitrite oxidation. Anoxic duration of 40–80 min should be beneficial for achieving stable nitritation.

Graphical abstract

Keywords

Anoxic stress / Carbon source / Digested piggery wastewater / Intermittently aerated SBR (IASBR) / Total nitrogen

Cite this article

Download citation ▾
Xiaoyan Song, Rui Liu, Lujun Chen, Baogang Dong, Tomoki Kawagishi. Advantages of intermittently aerated SBR over conventional SBR on nitrogen removal for the treatment of digested piggery wastewater. Front. Environ. Sci. Eng., 2017, 11(3): 13 DOI:10.1007/s11783-017-0941-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao BLi JLeu S Y. An innovative wood-chip-framework soil infiltrator for treating anaerobic digested swine wastewater and analysis of the microbial community. Bioresource Technology2014173: 384–391

[2]

Liu RChen L JWang G RYe Z X. On the pollution with antibiotics, heavy metal and conventional indicators in digested wastewater from large-scale pig farms in Jiaxing City, China. Environmental Engineering and Management Journal201615(10): 2253–2260

[3]

Deng LZheng PChen ZMahmood Q. Improvement in post-treatment of digested swine wastewater. Bioresource Technology200899(8): 3136–3145

[4]

Yamamoto TTakaki KKoyama TFurukawa K. Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox. Bioresource Technology200899(14): 6419–6425

[5]

MEPPRC (Ministry Environmental Protection of People’s Republic of China). Discharge Standard of Pollutants for Livestock and Poultry Breeding (draft), 2014. Available online at 

[6]

Vázquez-Padín J RFernández IMorales NCampos J LMosquera-Corral AMéndez R. Autotrophic nitrogen removal at low temperature. Water Science and Technology201163(6): 1282–1288

[7]

Yao HLiu HHe Y MZhang S JSun P ZHuang C H. Performance of an ANAMMOX reactor treating wastewater generated by antibiotic and starch production processes. Frontiers of Environmental Science & Engineering20126(6): 875–883

[8]

Kartal BKuenen J Gvan Loosdrecht M C. Sewage treatment with anammox. Science2010328(5979): 702–703

[9]

Molinuevo BGarcía M CKarakashev DAngelidaki I. Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance. Bioresource Technology2009100(7): 2171–2175

[10]

Obaja DMacé SCosta JSans CMata-Alvarez J. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource Technology200387(1): 103–111

[11]

Rajagopal RRousseau PBernet NBéline F. Combined anaerobic and activated sludge anoxic/oxic treatment for piggery wastewater. Bioresource Technology2011102(3): 2185–2192

[12]

Yang DDeng LZheng DWang LLiu Y. Separation of swine wastewater into different concentration fractions and its contribution to combined anaerobic-aerobic process. Journal of Environmental Management2016168: 87–93

[13]

Yang Y DZhang LShao H DZhang S JGu P CPeng Y Z. Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by partial nitritation/anammox. Frontiers of Environmental Science & Engineering201711(2): 8

[14]

Yang JTrela JZubrowska-Sudol MPlaza E. Intermittent aeration in one-stage partial nitritation/anammox process. Ecological Engineering201575: 413–420

[15]

Bortone GLibelli S M. Anoxic phosphate uptake in the dephanox process. Water Science and Technology199940(4–5): 177–185

[16]

Zhang MLawlor P GWu GLynch BZhan X. Partial nitrification and nutrient removal in intermittently aerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pig manure. Bioprocess and Biosystems Engineering201134(9): 1049–1056

[17]

Pan MHenry L GLiu RHuang XZhan X M. Nitrogen removal from slaughterhouse wastewater through partial nitrification followed by denitrification in intermittently aerated sequencing batch reactors at 11 degreeC. Environmental Technology201435(1-4): 470–477

[18]

Song X YLiu RShui YKawagishi TZhan X MChen L J. Stability of Short-cut Nitrification Nitrogen Removal in Digested Piggery Wastewater with an Intermittently Aerated Sequencing Batch Reactor. Environmental Sciences201637(5): 1873–1879 (in Chinese)

[19]

MEPPRC (Ministry Environmental Protection of People’s Republic of China). Standard Methods for Water and Wastewater Monitoring and Analysis, 4th ed. Beijing: China Environmental Science Press, 2002, 238–239; 252–256; 260–263; 266–269; 345–356 (in Chinese)

[20]

Yu L FWang S WGuo T CPeng D C. Nitrifiers accumulation with reject water and bio-augmentation for nitrification of sewage at short SRT. Environmental Sciences200829(2): 332–337 (in Chinese)

[21]

Rotthauwe J HWitzel K PLiesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology199763(12): 4704–4712 

[22]

Huang ZGedalanga P BAsvapathanagul POlson B H. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Research201044(15): 4351–4358

[23]

Ovreås LForney LDaae F LTorsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology199763(9): 3367–3373 

[24]

Baek KPark COh H MYoon B DKim H S. Diversity and abundance of ammonia-oxidizing bacteria in activated sludge treating different types of wastewater. Journal of Microbiology and Biotechnology201020(7): 1128–1133

[25]

Li JMeng JZhao B WAi B L. Main influence factors for shortcut nitrification in a SBR treating anaerobic digested piggery wastewater. Journal of Harbin Institute of Technology201446(8): 27–33 (in Chinese)

[26]

Anthonisen A CLoehr R CPrakasam T B SSrinath E G. Inhibition of nitrification by ammonia and nitrous acid. Journal- Water Pollution Control Federation197648(5): 835–852

[27]

Grady C P LDaigger J G TLim H C. Biological Wastewater Treatment. 2nd ed. American: Marcel Dekker Inc., 1999, 397–400

[28]

Wentzel M CLoewenthal R EEkama G AMarais G R. Enhanced polyphosphate organism cultures in activated sludge systems—Part I: Enhanced culture development. Water S.A.198814(2): 81–92

[29]

Wentzel M CEkama G ALoewenthal R EDold P L. Enhanced polyphosphate organism cultures in activated sludge systems—Part II: Experimental behaviour. Water S.A.198915(2): 71–88

[30]

Wentzel M CDold P LEkama G AMarais G R. Enhanced polyphosphate organism cultures in activated sludge systems- Part III: Kinetic model. Water S.A.198915(2): 89–102

[31]

Fu G KZhang C LYu X QZhang ZZhou Q. Research on the optimum operation strategy for deficient carbon source urban sewage treatment plants. Journal of Hunan Univerisity201239(8): 61–66 (Natural Sciences)

[32]

Daverey AHung N TDutta KLin J G. Ambient temperature SNAD process treating anaerobic digester liquor of swine wastewater. Bioresource Technology2013141: 191–198

[33]

Nowak OSvardal KSchweighofer P. The dynamic behaviour of nitrifying activated sludge systems influenced by inhibiting wastewater compounds. Water Science and Technology199531(2): 115–124

[34]

Tappe WLaverman ABohland MBraster MRittershaus SGroeneweg Jvan Verseveld H W. Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Applied and Environmental Microbiology199965(6): 2471–2477 

[35]

Chen WWesterhoff PLeenheer J ABooksh K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology200337(24): 5701–5710

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (499KB)

2051

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/