Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater

Xiaolin Sheng , Rui Liu , Xiaoyan Song , Lujun Chen , Kawagishi Tomoki

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 8

PDF (1879KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 8 DOI: 10.1007/s11783-017-0929-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater

Author information +
History +
PDF (1879KB)

Abstract

IASBRs achieved a higher level of TN and NH4+-N removals than the SBR.

IASBRs had higher abundance of denitrification–related bacteria than the SBR.

The denitrifiers abundance was correlated with the TN removal rate.

The NH4+–N removal rate might relate to the AOB activity.

A traditional sequencing batch reactor (SBR) and two intermittently aerated sequencing batch reactors (IASBRs) were parallelly operated for treating digested piggery wastewater. Their microbial communities were analyzed, and the nitrogen removal performance was compared during the long–term run. IASBRs demonstrated higher removal rates of total nitrogen (TN) and ammonium nitrogen (NH4+-N) than the SBR, and also demonstrated higher resistance against TN shock load. It was found that the more switch times between aerobic/anoxic in an IASBR, the higher the removal rates of TN and NH4+–N. All the reactors were predominated by Thauera, Nitrosomonas and Nitrobacter, which were considered to be species of denitrifiers, ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB), respectively. However, the abundance and diversity was of great difference. Compared with SBR, IASBRs achieved higher abundance of denitrification–related bacteria. IASBR 1 with four aerobic/anoxic switch times was detected with 25.63% of Thauera, higher than that in IASBR 2 with two aerobic/anoxic switch times (11.57% of Thauera), and much higher than that in the SBR (only 6.19% of Thauera). IASBR 2 had the highest percentage of AOB, while IASBR 1 had the lowest percentage. The denitrifiers abundance was significantly positive correlated with the TN removal rate. However, the NH4+–N removal rate showed no significant correlation with the AOB abundance, but might relate to the AOB activity which was influenced by the average free ammonium (FA) concentration. Nitrobacter was the only NOB genus detectable in all reactors, and were less than 0.03%.

Graphical abstract

Keywords

Digested piggery wastewater / Intermittent aeration / Microbial community / Partial nitrification–denitrification process / Sequencing batch reactor (SBR)

Cite this article

Download citation ▾
Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater. Front. Environ. Sci. Eng., 2017, 11(3): 8 DOI:10.1007/s11783-017-0929-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang L KZeng G MYang Z HLuo L LXu H YHuang J. Operation of partial nitrification to nitrite of landfill leachate and its performance with respect to different oxygen conditions. Biochemical Engineering Journal201487: 62–68

[2]

Okabe SOshiki MTakahashi YSatoh H. Development of long–term stable partial nitrification and subsequent anammox process. Bioresource Technology2011102(13): 6801–6807

[3]

Katsogiannis AKornaros MLyberatos G. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs. Water Science and Technology200347(11): 53–59

[4]

Li JElliott DNielsen MHealy M GZhan X. Long–term partial nitrification in an intermittently aerated sequencing batch reactor (SBR) treating ammonium–rich wastewater under controlled oxygen–limited conditions. Biochemical Engineering Journal201155(3): 215–222

[5]

Li JMeng JLi JWang CDeng KSun KBuelna G. The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating manure–free piggery wastewater. Bioresource Technology2016209: 360–368

[6]

Sotres ACerrillo MViñas MBonmatí A. Nitrogen removal in a two–chambered microbial fuel cell: establishment of a nitrifying–denitrifying microbial community on an intermittent aerated cathode. Chemical Engineering Journal2016284: 905–916

[7]

MEPPRC (Ministry Environmental Protection of People’s Republic of China). Standard Methods for Water and Wastewater Monitoring and Analysis. 4th ed. Beijing: China Environmental Science Press, 2002, 238–239; 252–256; 260–263; 266–269; 345–356

[8]

Zhang JLv CTong JTong JWei Y. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresource Technology2016200(2): 253–261

[9]

Kornaros M S N DLyberatos G. Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances. Environmental Science & Technology201044(19): 7245–7253

[10]

Alzate M J CCaravelli A HZaritzky N E. Nitrification and aerobic denitrification in anoxic–aerobic sequencing batch reactor. Bioresource Technology2016200: 380–387

[11]

Zhang GJiao YLee D J. Leachate treatment using anoxic/oxic–bioelectrochemical reactor with intermittent aeration. Journal of the Taiwan Institute of Chemical Engineers201558: 401–406

[12]

Chen A CChang J SYang LYang Y H. Nitrogen removal from sewage by continuous flow SBR system with intermittent aeration. Environmental Technology200122(5): 553–559

[13]

Li JHealy M GZhan XNortan DRodgers M. Effect of aeration rate on nutrient removal from slaughterhouse wastewater in intermittently aerated sequencing batch reactors. Water, Air, and Soil Pollution2008192(1–4): 251–261

[14]

Li HZhou SHuang GXu B. Partial nitritation of landfill leachate with varying influent composition under intermittent aeration conditions. Process Safety and Environmental Protection201391(4): 285–294

[15]

Zhang MLawlor P GWu GLynch BZhan X. Partial nitrification and nutrient removal in intermittently-aerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pig manure. Bioprocess and Biosystems Engineering201134(9): 1049–1056

[16]

Anthonisen A CLoehr R CPrakasam T B SSrinath E G. Inhibition of nitrification by ammonia and nitrous acid. Journal- Water Pollution Control Federation197648(5): 835–852

[17]

Bae WBaek SChung JLee Y. Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation200112(5): 359–366

[18]

Yang S FTay J HLiu Y. Inhibition of free ammonia to the formation of aerobic granules. Biochemical Engineering Journal200417(1): 41–48

[19]

Jia SHan HZhuang HHou BLi K. Impact of high external circulation ratio on the performance of anaerobic reactor treating coal gasification wastewater under thermophilic condition. Bioresource Technology2015192: 507–513

[20]

Yang SYang FFu ZWang TLei R. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. Journal of Hazardous Materials2010175(1–3): 551–557

[21]

Peng YZhu G. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology200673(1): 15–26

[22]

Yi JDong BJin JDai X. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS One20149(7): e102548

[23]

Spring SJackel UWagner MKampfer P. Ottowia thiooxydans gen. nov., sp. nov., a novel facultatively anaerobic, N2O–producing bacterium isolated from activated sludge, and transfer of Aquaspirillum gracile to Hylemonella gracilis gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology200454(Pt 1): 99–106

[24]

Yang QXiong PDing PChu LWang J. Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity. Bioresource Technology2015196: 169–175

[25]

Anders H JKaetzke AKampfer PLudwig WFuchs G. Taxonomic position of aromatic–degrading denitrifying pseudomonad Strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. International Journal of Systematic and Evolutionary Microbiology199545(2): 327–333

[26]

Mechichi TPatel B K CSayadi S. Anaerobic degradation of methoxylated aromatic compounds by Clostridium methoxybenzovorans and a nitrate–reducing bacterium Thauera sp. strain Cin3,4. International Biodeterioration & Biodegradation200556(4): 224–230

[27]

Dubbels B LSayavedra–Soto L ABottomley P JArp D J. Thauera butanivorans sp. nov., a C2–C9 alkane–oxidizing bacterium previously referred to as ‘Pseudomonas butanovora’. International Journal of Systematic and Evolutionary Microbiology200959(Pt 7): 1576–1578

[28]

Mao YXia YZhang T. Characterization of Thauera–dominated hydrogen–oxidizing autotrophic denitrifying microbial communities by using high–throughput sequencing. Bioresource Technology2013128: 703–710

[29]

Song BPalleroni N JKerkhof L JHaggblom M M. Characterization of halobenzoate–degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. International Journal of Systematic and Evolutionary Microbiology200151(Pt 2): 589–602

[30]

Huang ZGedalanga P BAsvapathanagul POlson B H. Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Research201044(15): 4351–4358

[31]

Kim K HIm W TLee S THymenobacter soli sp. nov., isolated from grass soil. International Journal of Systematic and Evolutionary Microbiology200858(Pt 4): 941–945

[32]

Liu Z PWang B JLiu Y HLiu S J. Novosphingobium taihuense sp. nov., a novel aromatic–compound–degrading bacterium isolated from Taihu Lake, China. International Journal of Systematic and Evolutionary Microbiology200555(Pt 3): 1229–1232

[33]

Liu YBalkwill D LAldrich H C RDrake GBoone D R. Characterization of the anaerobic propionate–degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. International Journal of Systematic and Evolutionary Microbiology199949(2): 545–556

[34]

Zeilstraryalls J JKaplan S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4. 1: the role of the fnrL gene. Journal of Bacteriology1995177(22): 6422–6431

[35]

Foesel B UDrake H LSchramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non–phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Systematic and Applied Microbiology201134(7): 498–502

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1879KB)

3310

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/