Transformation of triclosan by a novel cold-adapted laccase from Botrytissp. FQ

Yuanyuan Shi , Deyang Kong , Jiayang Liu , Junhe Lu , Xiaoming Yin , Quansuo Zhou

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 6

PDF (1276KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 6 DOI: 10.1007/s11783-017-0927-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Transformation of triclosan by a novel cold-adapted laccase from Botrytissp. FQ

Author information +
History +
PDF (1276KB)

Abstract

A cold-adapt laccase excreted by a fungi from rotten tomato was characterized.

The laccase can effectively transform triclosan to form polymerized products.

The reaction rate is first order to the concentrations of both laccase and triclosan.

The reaction was inhibited by humic acid.

This work investigated the transformation of triclosan (TCS) by laccase produced by a pathogen isolated from rotten tomato. The pathogen was characterized asBotrytis sp. FQ, belonging to subphylum Deuteromycotina. The laccase exhibited cold-adaptation with relatively high activity at 20°C. The laccase could effectively transform TCS. Approximately 62% TCS could be removed at dose of 1.0 unit·mL1 in 120 min. The reaction rate appeared to be pseudo-first-order to the concentration of the substrate, suggesting the laccase activity remained stable during the reaction. Transformation products of TCS were analyzed by mass spectrometry and it was revealed that TCS dimers were formed via radical coupling pathways. During this process, laccase catalyzed oxidation of TCS to form a radical intermediate is the rate limiting step. However, this step can be reversed by humic acid. Overall, the laccase showed great potential in the treatment of phenolic contaminants. Since laccase is widely presented in natural environment, this study also revealed an important pathway involved in the transformation of phenolic contaminants in the environment.

Graphical abstract

Keywords

Laccase / Botrytis cinerea / Triclosan / Transformation / Kinetics

Cite this article

Download citation ▾
Yuanyuan Shi, Deyang Kong, Jiayang Liu, Junhe Lu, Xiaoming Yin, Quansuo Zhou. Transformation of triclosan by a novel cold-adapted laccase from Botrytissp. FQ. Front. Environ. Sci. Eng., 2017, 11(3): 6 DOI:10.1007/s11783-017-0927-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gujjala L K S Bandyopadhyay T K Banerjee R . Kinetic modelling of laccase mediated delignification of Lantana camara. Bioresource Technology2016212: 47–54

[2]

Nguyen L NHai  F IDosseto  ARichardson C Price W E Nghiem L D . Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor. Bioresource Technology2016210: 108–116

[3]

Mao LHuang  QLuo Q Lu JYang  XGao S . Ligninase-mediated removal of 17b-estradiol from water in the presence of natural organic matter: efficiency and pathways. Chemosphere201080(4): 469–473

[4]

Mao LLu  JHabteselassie M Luo QGao  SCabrera M Huang Q . Ligninase-mediated removal of natural and synthetic estrogens from water: II. Reactions of 17b-estradiol. Environmental Science & Technology201044(7): 2599–2604nbsp;doi:10.1021/es903058k

[5]

Litthauer Dvan Vuuren  M Jvan Tonder  AWolfaardt F W . Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme and Microbial Technology200740(4): 563568

[6]

Liu J YCai  Y JLiao  X RHuang  Q GHao  Z HHu  M MZhang  D BLi  Z L. Efficiency of laccase production in a 65-liter air-lift reactor for potential green industrial and environmental application. Journal of Cleaner Production201339(1): 154160

[7]

Wang Z XCai  Y JLiao  X RTao  G JLi  Y YZhang  FZhang D B . Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1. Process Biochemistry201045(10): 17201729

[8]

Buth J MSteen  P OSueper  CBlumentritt D Vikesland P J Arnold W A McNeill K . Dioxin photoproducts of triclosan and its chlorinated derivatives in sediment cores. Environmental Science & Technology201044(12): 4545–4551

[9]

Halden R U. On the need and speed of regulating triclosan and triclocarban in the United States. Environmental Science & Technology201448(7): 3603–3611

[10]

Dann A BHontela  A. Triclosan: environmental exposure, toxicity and mechanisms of action. Journal of Applied Toxicology201131(4): 285–311

[11]

Fiss E MRule  K LVikesland  P J. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing antibacterial products. Environmental Science & Technology200741(7): 2387–2394

[12]

Fiss E MRule  K LVikesland  P J. Formation of chloroform and other chlorinated byproducts by chlorination of triclosan-containing products. Environmental Science & Technology200842(3): 976976

[13]

Latch D EPacker  J LStender  B LVanOverbeke  JArnold W A McNeill K . Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environmental Toxicology and Chemistry200524(3): 517–525

[14]

Zhang HHuang  C H. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environmental Science & Technology200337(11): 2421–2430

[15]

Li JPeng  JZhang Y Ji YShi  HMao L Gao S. Removal of triclosan via peroxidases-mediated reactions in water: reaction kinetics, products and detoxification. Journal of Hazardous Materials2016310: 152–160

[16]

Diwaniyan SKharb  DRaghukumar C Kuhad R . Decolorization of synthetic dyes and textile effluents by basidiomycetous fungi. Water, Air, and Soil Pollution2010210(1–4): 409419

[17]

Tien MKirk  T K. Lignin peroxidase of Phanerochaete chrysosporium. Methods in Enzymology1988161: 238249

[18]

Camarero SIbarra  DMartínez M J Martínez A T . Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Applied and Environmental Microbiology200571(4): 1775–1784

[19]

Yu HSutton  J C. Morphological development and interactions of Gliocladium roseum and Botrytis cinerea in raspberry. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie199719(3): 237246

[20]

Morgan W M. The effect of night temperature and glasshouse ventilation on the incidence of Botrytis cinerea in a late-planted tomato crop. Crop Protection (Guildford, Surrey)19843(2): 243251

[21]

Swadling I RJeffries  P. Antagonistic properties of two bacterial biocontrol agents of grey mould disease. Biocontrol Science and Technology19988(3): 439448

[22]

Amerine M A. The search for good wine. Science1966154(3757): 1621–1628

[23]

Zouari NRomette  J LThomas  D. Purification and properties of two laccase isoenzymes produced by Botrytis cinerea. Applied Biochemistry and Biotechnology198715(3): 213225

[24]

Baldrian P. Fungal laccases—Occurrence and properties. FEMS Microbiology Reviews200630(2): 215–242 PMID:16472305 doi:10.1111/j.1574-4976.2005.00010.x

[25]

Kim YYeo  SKim M K Choi H T . Removal of estrogenic activity from endocrine-disrupting chemicals by purified laccase of Phlebia tremellosa. FEMS Microbiology Letters2008284(2): 172–175

[26]

Wang ZCai  YLiao X Zhang F Zhang D Li Z. Production and characterization of a novel laccase with cold adaptation and high thermal stability from an isolated fungus. Applied Biochemistry and Biotechnology2010162(1): 280–294nbsp;doi:10.1007/s12010-009-8801-y

[27]

Auriol MFilali-Meknassi  YAdams C D Tyagi R D . Natural and synthetic hormone removal using the horseradish peroxidase enzyme: temperature and pH effects. Water Research200640(15): 2847–2856

[28]

Lu JHuang  QMao L . Removal of acetaminophen using enzyme-mediated oxidative coupling processes: I. Reaction rates and pathways. Environmental Science & Technology200943(18): 7062–7067

[29]

Murray C AParsons  S A. Removal of NOM from drinking water: Fenton’s and photo-Fenton’s processes. Chemosphere200454(7): 1017–1023

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1276KB)

2169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/