Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors

Lin LIU , Qiyu YOU , Valerie GIBSON , Xu HUANG , Shaohua CHEN , Zhilong YE , Chaoxiang LIU

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1139 -1148.

PDF (1573KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 1139 -1148. DOI: 10.1007/s11783-015-0823-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors

Author information +
History +
PDF (1573KB)

Abstract

The granulation process, physic-chemical properties, pollution removal ability and bacterial communities of aerobic granules with different feed-wastewater (synthetic wastewater, R1; swine wastewater, R2), and the change trend of some parameters of two types of granules in long-term operated reactors treating swine wastewater were investigated in this experiment. The result indicated that aerobic granulation with the synthetic wastewater had a faster rate compared with swine wastewater and that full granulation in R1 and R2 was reached on the 30th day and 39th day, respectively. However, although the feed wastewater also had an obvious effect on the biomass fraction and extracellular polymeric substances of the aerobic granules during the granulation process, these properties remained at a similar level after long-term operation. Moreover, a similar increasing trend could also be observed in terms of the nitrogen removal efficiencies of the aerobic granules in both reactors, and the average specific removal rates of the organics and ammonia nitrogen at the steady-state stage were 35.33 mg·g−1 VSS and 51.46 mg·g−1 VSS for R1, and 35.47 mg·g−1 VSS and 51.72 mg·g−1 VSS for R2, respectively. In addition, a shift in the bacterial diversity occurred in the granulation process, whereas bacterial communities in the aerobic granular reactor were not affected by the seed granules after long-term operation.

Keywords

aerobic granules / livestock wastewater / sequencing batch reactor / biological wastewater treatment / bacterial community

Cite this article

Download citation ▾
Lin LIU, Qiyu YOU, Valerie GIBSON, Xu HUANG, Shaohua CHEN, Zhilong YE, Chaoxiang LIU. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors. Front. Environ. Sci. Eng., 2015, 9(6): 1139-1148 DOI:10.1007/s11783-015-0823-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li PWang YWang YLiu KTong L. Bacterial community structure and diversity during establishment of an anaerobic bioreactor to treat swine wastewater. Water Science and Technology201061(1): 243–252

[2]

Morales NFigueroa MFra-Vázquez AVal del Río ACampos J LMosquera-Corral AMéndez R. Operation of an aerobic granular pilot scale SBR plant to treat swine slurry. Process Biochemistry201348(8): 1216–1221

[3]

Figueroa MVal del Rio ACampos J LMosquera-Corral AMendez R. Treatment of high loaded swine slurry in an aerobic granular reactor. Water Science and Technology201163(9): 1808

[4]

Yan L LLiu YRen YWang X HLiang H JZhang Y. The effect of pH on the efficiency of an SBR processing piggery wastewater. Biotechnology and Bioprocess Engineering201318(6): 1230–1237

[5]

Gao D WLiu LLiang HWu W M. Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Critical Reviews in Biotechnology201131(2): 137–152

[6]

Zhang X YWang B BHan Q QZhao H MPeng D C. Effects of shear force on formation and properties of anoxic granular sludge in SBR. Frontiers of Environmental Science & Engineering20137(6): 896–905

[7]

van Loosdrecht M CBrdjanovic D. Anticipating the next century of wastewater treatment. Science2014344(6191): 1452–1453

[8]

Othman IAnuar A NUjang ZRosman N HHarun HChelliapan S. Livestock wastewater treatment using aerobic granular sludge. Bioresource Technology2013133(2): 630–634

[9]

Jungles M KFigueroa MMorales NVal del Río Áda Costa R H RCampos J LMosquera-Corral AMéndez R. Start up of a pilot scale aerobic granular reactor for organic matter and nitrogen removal. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)201186(5): 763–768

[10]

Fang HCai LYu YZhang T. Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge. Bioresource Technology2013129(2): 209–218

[11]

Yadav T CKhardenavis A AKapley A. Shifts in microbial community in response to dissolved oxygen levels in activated sludge. Bioresource Technology2014165(8): 257–264

[12]

Liang BCheng HVan Nostrand J DMa JYu HKong DLiu WRen NWu LWang ALee D JZhou J. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover. Water Research201454(4): 137–148

[13]

Sheng GLi ALi XYu H. Effects of seed sludge properties and selective biomass discharge on aerobic sludge granulation. Chemical Engineering Journal2010160(1): 108–114

[14]

Song ZPan YZhang KRen NWang A. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge. Journal of Environmental Sciences−China201022(9): 1312–1318

[15]

Verawaty MPijuan MYuan ZBond P L. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Research201246(3): 761–771

[16]

APHA. Standard Methods for the Examination for Water and Wastewater. 21th ed. Washington, D C: American Public Health Association, 1998

[17]

Adav S SLee D J. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. Journal of Hazardous Materials2008154(1−3): 1120–1126

[18]

Liu LGao DZhang MFu Y. Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR. Journal of Hazardous Materials2010181(1−3): 382–387

[19]

Kim B SKim B KLee J HKim MLim Y WChun J. Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing. Journal of Microbiology (Seoul, Korea)200846(4): 357–363

[20]

Huse S MDethlefsen LHuber J AWelch D MRelman D ASogin M L. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLOS Genetics20084(11): e1000255 

[21]

Weber S DLudwig WSchleifer K HFried J. Microbial composition and structure of aerobic granular sewage biofilms. Applied and Environmental Microbiology200773(19): 6233–6240

[22]

Sheng G PYu H QLi X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Advances201028(6): 882–894

[23]

Wu LPeng CPeng YLi LWang SMa Y. Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift. Journal of Environmental Sciences−China201224(2): 234–241

[24]

Amorim C LMaia A SMesquita R BRangel A Ovan Loosdrecht MTiritan M ECastro P M. Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin. Water Research201450(3): 101–113

[25]

Elifantz HHorn GAyon MCohen YMinz DRhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiology Ecology201385(2): 348–357

[26]

Liu LGibson VHuang XLiu C XZhu G F. Effects of antibiotics on characteristics and microbial resistance of aerobic granules in sequencing batch reactors. Desalination and Water Treatment2015, (ahead-of-print): 1–10

[27]

Liu Y QLiu YTay J H. The effects of extracellular polymeric substances on the formation and stability of biogranules. Applied Microbiology and Biotechnology200465(2): 143–148

[28]

Liu LGao D WLiang H. Effect of sludge discharge positions on steady-state aerobic granules in sequencing batch reactor (SBR). Water Science and Technology201266(8): 1722–1727

[29]

Andreadakis A D. Anaerobic digestion of piggery wastes. Water Science and Technology199225(1): 9–16

[30]

Anthonisen A CLoehr R CPrakasam T BSrinath E G. Inhibition of nitrification by ammonia and nitrous acid. Journal- Water Pollution Control Federation197648(5): 835–852

[31]

Verawaty MPijuan MYuan ZBond P L. Determining the mechanisms for aerobic granulation from mixed seed of floccular and crushed granules in activated sludge wastewater treatment. Water Research201246(3): 761–771

[32]

Adav S SLee D JLai J Y. Microbial community of acetate utilizing denitrifiers in aerobic granules. Applied Microbiology and Biotechnology201085(3): 753–762

[33]

Purkhold UPommerening-Röser AJuretschko SSchmid M CKoops H PWagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology200066(12): 5368–5382

[34]

Daims HNielsen J LNielsen P HSchleifer K HWagner M. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Applied and Environmental Microbiology200167(11): 5273–5284

[35]

Lv YWan CLee D JLiu XTay J H. Microbial communities of aerobic granules: granulation mechanisms. Bioresource Technology2014169(5): 344–351

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1573KB)

Supplementary files

Supplementary Material

2792

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/