Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts

Nanli QIAO, Xin ZHANG, Chi HE, Yang LI, Zhongshen ZHANG, Jie CHENG, Zhengping HAO

PDF(716 KB)
PDF(716 KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (3) : 458-466. DOI: 10.1007/s11783-015-0802-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts

Author information +
History +

Abstract

A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of o-xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h-1, the 90% conversion of o-xylene has been obtained at around 200°C. The BET and SEM results indicated that Pd/MMS-b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability.

Keywords

hierarchical macro-/mesoporous / silica / palladium / VOCs catalytic oxidation

Cite this article

Download citation ▾
Nanli QIAO, Xin ZHANG, Chi HE, Yang LI, Zhongshen ZHANG, Jie CHENG, Zhengping HAO. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts. Front. Environ. Sci. Eng., 2016, 10(3): 458‒466 https://doi.org/10.1007/s11783-015-0802-1

References

[1]
Huang Q, Xue X, Zhou R. Decomposition of 1,2-dichloroethane over CeO2 modified USY zeolite catalysts: effect of acidity and redox property on the catalytic behavior. Journal of Hazardous Materials, 2010, 183(1-3): 694–700
CrossRef Pubmed Google scholar
[2]
Schottler M, Hottenroth H, Schluter B, Schmidt M. Volatile organic compound abatement in semiconductor and solar cell fabrication with respect to resource depletion. Chemical Engineering & Technology, 2010, 33(4): 638–646
CrossRef Google scholar
[3]
Fang B, Kim J H, Kim M S, Yu J S. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Accounts of Chemical Research, 2013, 46(7): 1397–1406
CrossRef Pubmed Google scholar
[4]
Yao J M, Zhan W C, Liu X H, Guo Y L, Wang Y Q, Guo Y, Lu G Z. Catalytic performance of Ti-SBA-15 prepared by chemical vapor deposition for propylene epoxidation. Microporous and Mesoporous Materials, 2012, 148(1): 131–136
CrossRef Google scholar
[5]
Popova M, Szegedi A, Cherkezova-Zheleva Z, Mitov I, Kostova N, Tsoncheva T. Toluene oxidation on titanium- and iron-modified MCM-41 materials. Journal of Hazardous Materials, 2009, 168(1): 226–232
CrossRef Pubmed Google scholar
[6]
Zhao W, Cheng J, Wang L N, Chu J L, Qu J K, Liu Y H, Li S H, Zhang H, Wang J C, Hao Z P, Qi T. Catalytic combustion of chlorobenzene on the Ln modified Co/HMS. Applied Catalysis B: Environmental, 2012, 127: 246–254
CrossRef Google scholar
[7]
Tsoncheva T, Issa G, Nieto J M L, Blasco T, Concepcion P, Dimitrov M, Atanasova G, Kovacheva D. Pore topology control of supported on mesoporous silicas copper and cerium oxide catalysts for ethyl acetate oxidation. Microporous and Mesoporous Materials, 2013, 180: 156–161
CrossRef Google scholar
[8]
He C, Li P, Wang H, Cheng J, Zhang X, Wang Y, Hao Z. Ligand-assisted preparation of highly active and stable nanometric Pd confined catalysts for deep catalytic oxidation of toluene. Journal of Hazardous Materials, 2010, 181(1-3): 996–1003
CrossRef Pubmed Google scholar
[9]
Bendahou K, Cherif L, Siffert S, Tidahy H L, Benaïssa H, Aboukaïs A. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene. Applied Catalysis A, 2008, 351(1): 82–87
CrossRef Google scholar
[10]
Ramanathan A, Subramaniam B, Maheswari R, Hanefeld U. Synthesis and characterization of Zirconium incorporated ultra large pore mesoporous silicate, Zr–KIT-6. Microporous and Mesoporous Materials, 2013, 167: 207–212
CrossRef Google scholar
[11]
Barbier J. Deactivation of reforming catalysts by coking–a review. Applied Catalysis, 1986, 23(2): 225–243
CrossRef Google scholar
[12]
Sun Z K, Deng Y H, Wei J, Gu D, Tu B, Zhao D Y. Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins. Chemistry of Materials, 2011, 23(8): 2176–2184
CrossRef Google scholar
[13]
Kim Y S, Guo X F, Kim G J. Asymmetric ring opening reaction of catalyst immobilized on silica monolith with bimodal meso/macroscopic pore structure. Topics in Catalysis, 2009, 52(1-2): 197–204
CrossRef Google scholar
[14]
Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D, Jiang L. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano, 2011, 5(1): 590–596
CrossRef Pubmed Google scholar
[15]
Liu J, Li M, Wang J, Song Y, Jiang L, Murakami T, Fujishima A. Hierarchically macro-/mesoporous Ti-Si oxides photonic crystal with highly efficient photocatalytic capability. Environmental Science & Technology, 2009, 43(24): 9425–9431
CrossRef Pubmed Google scholar
[16]
Dhainaut J, Dacquin J P, Lee A F, Wilson K. Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chemistry, 2010, 12(2): 296–303
CrossRef Google scholar
[17]
Chiu J J, Pine D J, Bishop S T, Chmelka B F. Friedel–Crafts alkylation properties of aluminosilica SBA-15 meso/macroporous monoliths and mesoporous powders. Journal of Catalysis, 2004, 221(2): 400–412
CrossRef Google scholar
[18]
Rudisill S G,Wang Z Y, Stein A. Maintaining the structure of templated porous materials for reactive and high-temperature applications. Langmuir, 2012, 28(19): 7310–7324
CrossRef Google scholar
[19]
Stein A, Wilson B E, Rudisill S G. Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chemical Society Reviews, 2013, 42(7): 2763–2803
CrossRef Pubmed Google scholar
[20]
Zhao D Y, Huo Q S, Feng J L, Chemlka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036
CrossRef Google scholar
[21]
Cao E, Sankar M, Nowicka E, He Q, Morad M, Miedziak P J, Taylor S H, Knight D W, Bethell D, Kiely C J, Gavriilidis A, Hutchings G J. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au–Pd nanoparticles. Catalysis Today, 2013, 203: 146–152
CrossRef Google scholar
[22]
Dou J, Zeng H C. Integrated networks of mesoporous silica nanowires and their bifunctional catalysis-sorption application for oxidative desulfurization. ACS Catalysis, 2014, 4(2): 566–576
CrossRef Google scholar
[23]
Deng W H, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65
CrossRef Google scholar
[24]
Yuan J, Dai H X, Zhang L, Deng J G, Liu Y X, Zhang H, Jiang H Y, He H. PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion. Catalysis Today, 2011, 175(1): 209–215
CrossRef Google scholar
[25]
Liu B C, Liu Y, Li C Y, Hu W T, Jing P, Wang Q, Zhang J. Three-dimensionally ordered macroporous Au/CeO2-Co3O4 catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde. Applied Catalysis B: Environmental, 2012, 127: 47–58
CrossRef Google scholar
[26]
Yun J S, Ihm S K. Synthesis of mesoporous SBA-15 having macropores by dual-templating method. Journal of Physics and Chemistry of Solids, 2008, 69(5-6): 1133–1135
CrossRef Google scholar
[27]
Parlett C M A, Keshwalla P, Wainwright S G, Bruce D W, Hondow N S, Wilson K, Lee A F. Hierarchically ordered nanoporous Pd/SBA-15 catalyst for the aerobic selective oxidation of sterically challenging allylic alcohols. ACS Catalysis, 2013, 3(9): 2122–2129
CrossRef Google scholar
[28]
Parlett C M A, Bruce D W, Hondow N S, Newton M A, Lee A F, Wilson K. Mesoporous silicas as versatile supports to tune the palladium-catalyzed selective aerobic oxidation of allylic alcohols. ChemCatChem, 2013, 5(4): 939–950
CrossRef Google scholar
[29]
Chen L F, González G, Wang J A, Noreña L E, Toledo A, Castillo S, Morán-Pineda M. Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen. Applied Surface Science, 2005, 243(1-4): 319–328
CrossRef Google scholar
[30]
Becker L, Forster H. Oxidative decomposition of benzene and its methyl derivatives catalyzed by copper and palladium ion-exchanged Y-type zeolites. Applied Catalysis B: Environmental, 1998, 17(1-2): 43–49
CrossRef Google scholar
[31]
He C, Li J J, Cheng J, Li L D, Li P, Hao Z, Xu Z P. Ha Z P, Xu Z P. Comparative studies on porous material-supported Pd catalysts for catalytic oxidation of benzene, toluene, and ethyl acetate. Industrial & Engineering Chemistry Research, 2009, 48(15): 6930–6936
CrossRef Google scholar
[32]
Wang F, Li J S, Yuan J F, Sun X Y, Shen J Y, Han W Q, Wang L J. Short channeled Zr-Ce-SBA-15 supported palladium catalysts for toluene catalytic oxidation. Catalysis Communications, 2011, 12(15): 1415–1419
CrossRef Google scholar
[33]
Pérez-Ramírez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542
CrossRef Pubmed Google scholar
[34]
Kortunov P, Vasenkov S, Kärger J, Valiullin R, Gottschalk P, Elía M F, Perez M, Stöcker M, Drescher B, McElhiney G, Berger C, Gläser R, Weitkamp J. The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales. Journal of the American Chemical Society, 2005, 127(37): 13055–13059
CrossRef Pubmed Google scholar
[35]
Adrian B. Constructal-theory network of conducting paths for cooling a heat generating volume. International Journal of Heat and Mass Transfer, 1997, 40(4): 799–816
CrossRef Google scholar
[36]
Gheorghiu S, Coppens M O. Optimal bimodal pore networks for heterogeneous catalysis. AIChE Journal. American Institute of Chemical Engineers, 2004, 50(4): 812–820
CrossRef Google scholar
[37]
Wang X, Yu J C, Ho C, Hou Y, Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir, 2005, 21(6): 2552–2559
CrossRef Pubmed Google scholar
[38]
Dong F, Lee S C, Wu Z, Huang Y, Fu M, Ho W K, Zou S, Wang B. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. Journal of Hazardous Materials, 2011, 195: 346–354
CrossRef Pubmed Google scholar
[39]
Dong F, Sun Y, Ho W K, Wu Z. Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures. Dalton Transactions (Cambridge, England), 2012, 41(27): 8270–8284
CrossRef Pubmed Google scholar
[40]
Parlett C M A, Wilson K, Lee A F. Hierarchical porous materials: catalytic applications. Chemical Society Reviews, 2013, 42(9): 3876–3893
CrossRef Pubmed Google scholar
[41]
Liu G, Yang K, Li J Q, Tang W X, Xu J B, Liu H D, Yue R L, Chen Y F. Surface diffusion of Pt clusters in/on SiO2 matrix at elevated temperatures and their improved catalytic activities in benzene oxidation. Journal of Physical Chemistry C, 2014, 118(39): 22719–22729
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation (Grant Nos. 21337003 and 21477149), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05050200).
Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11783-015-0802-1 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(716 KB)

Accesses

Citations

Detail

Sections
Recommended

/