Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts

Nanli QIAO , Xin ZHANG , Chi HE , Yang LI , Zhongshen ZHANG , Jie CHENG , Zhengping HAO

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (3) : 458 -466.

PDF (716KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (3) : 458 -466. DOI: 10.1007/s11783-015-0802-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts

Author information +
History +
PDF (716KB)

Abstract

A series of hierarchical macro-/mesoporous silica supports (MMSs) were successfully synthesized using dual-templating technique employing polystyrene (PS) spheres and the Pluronic P123 surfactant. Pd was next loaded on the hierarchical silica supports via colloids precipitation method. Physicochemical properties of the synthesized samples were characterized by various techniques and all catalysts were tested for the total oxidation of o-xylene. Among them, the Pd/MMS-b catalyst with tetraethoxysilane/polystyrene weight ratio of 1.0 exhibited superior catalytic activity, and under a higher gas hourly space velocity (GHSV) of 70000 h-1, the 90% conversion of o-xylene has been obtained at around 200°C. The BET and SEM results indicated that Pd/MMS-b catalyst possesses high surface area and large pore volume, and well-ordered, interconnected macropores and 2D hexagonally mesopores hybrid network. This novel ordered hierarchical porous structure was highly beneficial to the dispersion of active sites Pd nanoparticles with less aggregation, and facilitates diffusion of reactants and products. Furthermore, the Pd/MMS-b catalyst possessed good stability and durability.

Keywords

hierarchical macro-/mesoporous / silica / palladium / VOCs catalytic oxidation

Cite this article

Download citation ▾
Nanli QIAO, Xin ZHANG, Chi HE, Yang LI, Zhongshen ZHANG, Jie CHENG, Zhengping HAO. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts. Front. Environ. Sci. Eng., 2016, 10(3): 458-466 DOI:10.1007/s11783-015-0802-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang Q, Xue X, Zhou R. Decomposition of 1,2-dichloroethane over CeO2 modified USY zeolite catalysts: effect of acidity and redox property on the catalytic behavior. Journal of Hazardous Materials, 2010, 183(1-3): 694–700

[2]

Schottler M, Hottenroth H, Schluter B, Schmidt M. Volatile organic compound abatement in semiconductor and solar cell fabrication with respect to resource depletion. Chemical Engineering & Technology, 2010, 33(4): 638–646

[3]

Fang B, Kim J H, Kim M S, Yu J S. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Accounts of Chemical Research, 2013, 46(7): 1397–1406

[4]

Yao J M, Zhan W C, Liu X H, Guo Y L, Wang Y Q, Guo Y, Lu G Z. Catalytic performance of Ti-SBA-15 prepared by chemical vapor deposition for propylene epoxidation. Microporous and Mesoporous Materials, 2012, 148(1): 131–136

[5]

Popova M, Szegedi A, Cherkezova-Zheleva Z, Mitov I, Kostova N, Tsoncheva T. Toluene oxidation on titanium- and iron-modified MCM-41 materials. Journal of Hazardous Materials, 2009, 168(1): 226–232

[6]

Zhao W, Cheng J, Wang L N, Chu J L, Qu J K, Liu Y H, Li S H, Zhang H, Wang J C, Hao Z P, Qi T. Catalytic combustion of chlorobenzene on the Ln modified Co/HMS. Applied Catalysis B: Environmental, 2012, 127: 246–254

[7]

Tsoncheva T, Issa G, Nieto J M L, Blasco T, Concepcion P, Dimitrov M, Atanasova G, Kovacheva D. Pore topology control of supported on mesoporous silicas copper and cerium oxide catalysts for ethyl acetate oxidation. Microporous and Mesoporous Materials, 2013, 180: 156–161

[8]

He C, Li P, Wang H, Cheng J, Zhang X, Wang Y, Hao Z. Ligand-assisted preparation of highly active and stable nanometric Pd confined catalysts for deep catalytic oxidation of toluene. Journal of Hazardous Materials, 2010, 181(1-3): 996–1003

[9]

Bendahou K, Cherif L, Siffert S, Tidahy H L, Benaïssa H, Aboukaïs A. The effect of the use of lanthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene. Applied Catalysis A, 2008, 351(1): 82–87

[10]

Ramanathan A, Subramaniam B, Maheswari R, Hanefeld U. Synthesis and characterization of Zirconium incorporated ultra large pore mesoporous silicate, Zr–KIT-6. Microporous and Mesoporous Materials, 2013, 167: 207–212

[11]

Barbier J. Deactivation of reforming catalysts by coking–a review. Applied Catalysis, 1986, 23(2): 225–243

[12]

Sun Z K, Deng Y H, Wei J, Gu D, Tu B, Zhao D Y. Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins. Chemistry of Materials, 2011, 23(8): 2176–2184

[13]

Kim Y S, Guo X F, Kim G J. Asymmetric ring opening reaction of catalyst immobilized on silica monolith with bimodal meso/macroscopic pore structure. Topics in Catalysis, 2009, 52(1-2): 197–204

[14]

Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D, Jiang L. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano, 2011, 5(1): 590–596

[15]

Liu J, Li M, Wang J, Song Y, Jiang L, Murakami T, Fujishima A. Hierarchically macro-/mesoporous Ti-Si oxides photonic crystal with highly efficient photocatalytic capability. Environmental Science & Technology, 2009, 43(24): 9425–9431

[16]

Dhainaut J, Dacquin J P, Lee A F, Wilson K. Hierarchical macroporous-mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis. Green Chemistry, 2010, 12(2): 296–303

[17]

Chiu J J, Pine D J, Bishop S T, Chmelka B F. Friedel–Crafts alkylation properties of aluminosilica SBA-15 meso/macroporous monoliths and mesoporous powders. Journal of Catalysis, 2004, 221(2): 400–412

[18]

Rudisill S G,Wang Z Y, Stein A. Maintaining the structure of templated porous materials for reactive and high-temperature applications. Langmuir, 2012, 28(19): 7310–7324

[19]

Stein A, Wilson B E, Rudisill S G. Design and functionality of colloidal-crystal-templated materials—chemical applications of inverse opals. Chemical Society Reviews, 2013, 42(7): 2763–2803

[20]

Zhao D Y, Huo Q S, Feng J L, Chemlka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036

[21]

Cao E, Sankar M, Nowicka E, He Q, Morad M, Miedziak P J, Taylor S H, Knight D W, Bethell D, Kiely C J, Gavriilidis A, Hutchings G J. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au–Pd nanoparticles. Catalysis Today, 2013, 203: 146–152

[22]

Dou J, Zeng H C. Integrated networks of mesoporous silica nanowires and their bifunctional catalysis-sorption application for oxidative desulfurization. ACS Catalysis, 2014, 4(2): 566–576

[23]

Deng W H, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65

[24]

Yuan J, Dai H X, Zhang L, Deng J G, Liu Y X, Zhang H, Jiang H Y, He H. PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion. Catalysis Today, 2011, 175(1): 209–215

[25]

Liu B C, Liu Y, Li C Y, Hu W T, Jing P, Wang Q, Zhang J. Three-dimensionally ordered macroporous Au/CeO2-Co3O4 catalysts with nanoporous walls for enhanced catalytic oxidation of formaldehyde. Applied Catalysis B: Environmental, 2012, 127: 47–58

[26]

Yun J S, Ihm S K. Synthesis of mesoporous SBA-15 having macropores by dual-templating method. Journal of Physics and Chemistry of Solids, 2008, 69(5-6): 1133–1135

[27]

Parlett C M A, Keshwalla P, Wainwright S G, Bruce D W, Hondow N S, Wilson K, Lee A F. Hierarchically ordered nanoporous Pd/SBA-15 catalyst for the aerobic selective oxidation of sterically challenging allylic alcohols. ACS Catalysis, 2013, 3(9): 2122–2129

[28]

Parlett C M A, Bruce D W, Hondow N S, Newton M A, Lee A F, Wilson K. Mesoporous silicas as versatile supports to tune the palladium-catalyzed selective aerobic oxidation of allylic alcohols. ChemCatChem, 2013, 5(4): 939–950

[29]

Chen L F, González G, Wang J A, Noreña L E, Toledo A, Castillo S, Morán-Pineda M. Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen. Applied Surface Science, 2005, 243(1-4): 319–328

[30]

Becker L, Forster H. Oxidative decomposition of benzene and its methyl derivatives catalyzed by copper and palladium ion-exchanged Y-type zeolites. Applied Catalysis B: Environmental, 1998, 17(1-2): 43–49

[31]

He C, Li J J, Cheng J, Li L D, Li P, Hao Z, Xu Z P. Ha Z P, Xu Z P. Comparative studies on porous material-supported Pd catalysts for catalytic oxidation of benzene, toluene, and ethyl acetate. Industrial & Engineering Chemistry Research, 2009, 48(15): 6930–6936

[32]

Wang F, Li J S, Yuan J F, Sun X Y, Shen J Y, Han W Q, Wang L J. Short channeled Zr-Ce-SBA-15 supported palladium catalysts for toluene catalytic oxidation. Catalysis Communications, 2011, 12(15): 1415–1419

[33]

Pérez-Ramírez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542

[34]

Kortunov P, Vasenkov S, Kärger J, Valiullin R, Gottschalk P, Elía M F, Perez M, Stöcker M, Drescher B, McElhiney G, Berger C, Gläser R, Weitkamp J. The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales. Journal of the American Chemical Society, 2005, 127(37): 13055–13059

[35]

Adrian B. Constructal-theory network of conducting paths for cooling a heat generating volume. International Journal of Heat and Mass Transfer, 1997, 40(4): 799–816

[36]

Gheorghiu S, Coppens M O. Optimal bimodal pore networks for heterogeneous catalysis. AIChE Journal. American Institute of Chemical Engineers, 2004, 50(4): 812–820

[37]

Wang X, Yu J C, Ho C, Hou Y, Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir, 2005, 21(6): 2552–2559

[38]

Dong F, Lee S C, Wu Z, Huang Y, Fu M, Ho W K, Zou S, Wang B. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. Journal of Hazardous Materials, 2011, 195: 346–354

[39]

Dong F, Sun Y, Ho W K, Wu Z. Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures. Dalton Transactions (Cambridge, England), 2012, 41(27): 8270–8284

[40]

Parlett C M A, Wilson K, Lee A F. Hierarchical porous materials: catalytic applications. Chemical Society Reviews, 2013, 42(9): 3876–3893

[41]

Liu G, Yang K, Li J Q, Tang W X, Xu J B, Liu H D, Yue R L, Chen Y F. Surface diffusion of Pt clusters in/on SiO2 matrix at elevated temperatures and their improved catalytic activities in benzene oxidation. Journal of Physical Chemistry C, 2014, 118(39): 22719–22729

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (716KB)

2040

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/