Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron

Rongbing FU , Na MU , Xiaopin GUO , Zhen XU , Dongsu BI

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 867 -878.

PDF (1913KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 867 -878. DOI: 10.1007/s11783-015-0800-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron

Author information +
History +
PDF (1913KB)

Abstract

Nanoscale zerovalent iron (nZVI) synthesized using sepiolite as a supporter was used to investigate the removal kinetics and mechanisms of decabromodiphenyl ether (BDE-209). BDE-209 was rapidly removed by the prepared sepiolite-supported nZVI with a reaction rate that was 5 times greater than that of the conventionally prepared nZVI because of its high surface area and reactivity. The degradation of BDE-209 occurred in a stepwise debromination manner, which followed pseudo-first-order kinetics. The removal efficiency of BDE-209 increased with increasing dosage of sepiolite-supported nZVI particles and decreasing pH, and the efficiency decreased with increasing initial BDE-209 concentrations. The presence of tetrahydrofuran (THF) as a cosolvent at certain volume fractions in water influenced the degradation rate of sepiolite-supported nZVI. Debromination pathways of BDE-209 with sepiolite-supported nZVI were proposed based on the identified reaction intermediates, which ranged from nona- to mono-brominated diphenylethers (BDEs) under acidic conditions and nona- to penta-BDEs under alkaline conditions. Adsorption on sepiolite-supported nZVI particles also played a role in the removal of BDE-209. Our findings indicate that the particles have potential applications in removing environmental pollutants, such as halogenated organic contaminants.

Keywords

sepiolite-supported nanoscale zerovalent iron / decabromodiphenyl ether / debromination / adsorption / mechanism

Cite this article

Download citation ▾
Rongbing FU, Na MU, Xiaopin GUO, Zhen XU, Dongsu BI. Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron. Front. Environ. Sci. Eng., 2015, 9(5): 867-878 DOI:10.1007/s11783-015-0800-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peng X ZTang C MYu Y YTan J HHuang Q XWu J PChen S JMai B X. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China. Environment International200935(2): 303–309

[2]

Shi TChen S JLuo X JZhang X LTang C MLuo YMa Y JWu J PPeng X ZMai B X. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China. Chemosphere200974(7): 910–916

[3]

Mariussen EFjeld EBreivik KSteinnes EBorgen AKjellberg GSchlabach M. Elevated levels of polybrominated diphenyl ethers (PBDEs) in fish from Lake Mjøsa, Norway. Science of the Total Environment2008390(1): 132–141

[4]

Johnson-Restrepo BKannan KRapaport D PRodan B D. Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. Environmental Science & Technology200539(14): 5177–5182

[5]

Sjödin AJones R SFocant J FLapeza CWang R YMcGahee E E 3rd, Zhang Y LTurner W ESlazyk BNeedham L LPatterson D G. Retrospective time-trend study of polybrominated diphenyl ether and polybrominated and polychlorinated biphenyl levels in human serum from the United States. Environmental Health Perspectives2004112(6): 654–658

[6]

Luo X JLiu JLuo YZhang X LWu J PLin ZChen S JMai B XYang Z Y. Polybrominated diphenyl ethers (PBDEs) in free-range domestic fowl from an e-waste recycling site in South China: levels, profile and human dietary exposure. Environment International200935(2): 253–258

[7]

Luo X JYu MMai B XChen S J. Distribution and partition of polybrominated diphenyl ethers (PBDEs) in water of the Zhujiang River Estuary. Chinese Science Bulletin200853(4): 493–500

[8]

Luo QWong M HCai Z W. Determination of polybrominated diphenyl ethers in freshwater fishes from a river polluted by e-wastes. Talanta200772(5): 1644–1649

[9]

Darnerud P OEriksen G SJóhannesson TLarsen P BViluksela M. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives2001109(Suppl 1): 49–68

[10]

Behnisch P AHosoe KSakai S. Brominated dioxin-like compounds: in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds. Environment International200329(6): 861–877

[11]

Keum Y SLi Q X. Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science & Technology200539(7): 2280–2286

[12]

Vonderheide A PMueller K EMeija JWelsh G L. Polybrominated diphenyl ethers: causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity. Science of the Total Environment2008400(1−3): 425–436

[13]

Cai Y LLiang BFang Z QXie Y YTsang E P. Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor. Frontiers of Environmental Science & Engineering, doi: 10.1007/s11783-014-0764-8

[14]

Fang Z QQiu X HChen J HQiu X Q. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. Journal of Hazardous Materials2011185(2−3): 958–969

[15]

Wei Y TWu S CChou C MChe C HTsai S MLien H L. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Research201044(1): 131–140

[16]

Ghasemzadeh GMomenpour MOmidi FHosseini M RAhani MBarzegari A. Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science & Engineering20148(4): 471–482

[17]

Chen XYao X YYu C NSu X MShen C FChen CHuang R LXu X H. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Environmental Science and Pollution Research International201421(7): 5201–5210

[18]

Wang C BZhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology199731(7): 2154–2156

[19]

Fang Z QQiu X HChen J HQiu X Q. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination2011267(1): 34–41

[20]

Shih YTai Y. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere201078(10): 1200–1206

[21]

Zhuang YAhn SLuthy R G. Debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron: pathways, kinetics, and reactivity. Environmental Science & Technology201044(21): 8236–8242

[22]

Xiao J NGao B YYue Q YGao YLi Q. Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron: Characterization, kinetics and mechanism. Chemical Engineering Journal2015262: 1226–1236

[23]

Yu KGu CBoyd S ALiu CSun CTeppen B JLi H. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron. Environmental Science & Technology201246(16): 8969–8975

[24]

Fei X NCao L YZhou L FGu Y CWang X Y. Degradation of bromamine acid by nanoscale zero-valent iron (nZVI) supported on sepiolite. Water Science and Technology201266(12): 2539–2545

[25]

Xiao J NYue Q YGao B YSun Y YKong J JGao YLi QWang Y. Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water. Chemical Engineering Journal2014253: 63–72

[26]

Li ATai CZhao Z SWang Y WZhang Q HJiang G BHu J T. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environmental Science & Technology200741(19): 6841–6846

[27]

Qiu X HFang Z QLiang BGu F LXu Z C. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. Journal of Hazardous Materials2011193: 70–81

[28]

Luo SQin P FShao J HPeng LZeng Q RGu J D. Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for Orange II removal. Chemical Engineering Journal2013223: 1–7

[29]

Wang WZhou M HMao QYue J JWang X. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst. Catalysis Communications201011(11): 937–941

[30]

Bokare A DChikate R CRode C VPaknikar K M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Applied Catalysis B: Environmental200879(3): 270–278

[31]

Lin K DDing J FHuang X W. Debromination of tetrabromobisphenol A by nanoscale zerovalent iron: kinetics, influencing factors, and pathways. Industrial & Engineering Chemistry Research201251(25): 8378–8385

[32]

Choe SLee S HChang Y YHwang K YKhim J. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0Chemosphere200142(4): 367–372

[33]

Yang G C CLee H L. Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research200539(5): 884–894

[34]

Gerecke A CHartmann P CHeeb N VKohler H P EGiger WSchmid PZennegg MKohler M. Anaerobic degradation of decabromodiphenyl ether. Environmental Science & Technology200539(4): 1078–1083那我上去

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1913KB)

2476

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/