Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode

Jiangkun DU , Jianguo BAO , Wei HU

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 919 -928.

PDF (767KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 919 -928. DOI: 10.1007/s11783-015-0794-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode

Author information +
History +
PDF (767KB)

Abstract

In this study, palladium-loaded titania nanotubes was fabricated on a titanium plate (Pd/TiO2NTs/Ti) for efficient electrodechlorination of 2,4-chlorophenol with a mild pH condition. The nature of Pd/TiO2NTs/Ti electrodes was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) techniques. The characterization results indicated the generation of Pd0 nanoparticles which were evenly dispersed on titania nanotubes arrays on the Pd/TiO2NTs/Ti surface. An effective degradation efficiency of up to 91% was achieved within 60 min at cathode potential of −0.7 V (vs. SCE) and initial pH of 5.5. The effects of the applied cathode potential and initial pH on the degradation efficiency were studied. A near neutral condition was more favorable since very low and very high pHs were not conducive to the dechlorination process. Furthermore, the intermediates analysis showed that the Pd/TiO2NTs/Ti electrode could completely remove chlorine from 2, 4-dichlorophenol since only phenol was detected as the byproduct and the concentration of released chlorine ions indicated near-complete dechlorination. This work presents a good alternative technique for eliminating persistent chlorophenols in polluted wastewater without maintaining strong acidic environment.

Keywords

Pd/TiO2NTs/Ti cathode / chlorophenols / electrocatalytic dechlorination / wastewater treatment

Cite this article

Download citation ▾
Jiangkun DU, Jianguo BAO, Wei HU. Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode. Front. Environ. Sci. Eng., 2015, 9(5): 919-928 DOI:10.1007/s11783-015-0794-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fan CLi NCao X. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chemistry2015174(0): 446–451

[2]

Olaniran A OIgbinosa E O. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere201183(10): 1297–1306

[3]

Karci AArslan-Alaton IOlmez-Hanci TBekbölet M. Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: oxidation products and toxicity evolution. Journal of Photochemistry and Photobiology A Chemistry2012230(1): 65–73

[4]

Carmona MGarcia M TCarnicer ÁMadrid MRodríguez J F. Adsorption of phenol and chlorophenols onto granular activated carbon and their desorption by supercritical CO2. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)201489(11): 1660–1667

[5]

Du JBao JTong MYuan S. Dechlorination of pentachlorophenol by palladium/iron nanoparticles immobilized in a membrane synthesized by sequential and simultaneous reduction of trivalent iron and divalent palladium ions. Environmental Engineering Science201330(7): 350–356

[6]

Sun ZWei XHu XWang KShen H. Electrocatalytic dechlorination of 2,4-dichlorophenol in aqueous solution on palladium loaded meshed titanium electrode modified with polymeric pyrrole and surfactant. Colloids and Surfaces. A, Physicochemical and Engineering Aspects2012414(46): 314–319

[7]

Sharma SMukhopadhyay MMurthy Z V P. Degradation of 4-chlorophenol in wastewater by organic oxidants. Industrial & Engineering Chemistry Research201049(7): 3094–3098

[8]

Pera-Titus MGarcía-Molina VBaños M AGiménez JEsplugas S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental200447(4): 219–256

[9]

Czaplicka M. Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment2004322(1−3): 21–39

[10]

Zheng MBao JLiao PWang KYuan STong MLong H. Electrogeneration of H2 for Pd-catalytic hydrodechlorination of 2,4-dichlorophenol in groundwater. Chemosphere201287(10): 1097–1104

[11]

Mitoma YKakeda MSimion A MEgashira NSimion C. Metallic Ca-Rh/C-methanol, a high-performing system for the hydrodechlorination/ring reduction of mono- and poly chlorinated aromatic substrates. Environmental Science & Technology200943(15): 5952–5958

[12]

Sun ZWang KWei XTong SHu X. Electrocatalytic hydrodehalogenation of 2,4-dichlorophenol in aqueous solution on palladium–nickel bimetallic electrode synthesized with surfactant assistance. International Journal of Hydrogen Energy201237(23): 17862–17869

[13]

Xu Y HCai Q QMa H XHe YZhang HMa C A. Optimisation of electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid on a roughened silver–palladium cathode. Electrochimica Acta201396(5): 90–96

[14]

Xu Y HZhang HChu C PMa C A. Dechlorination of chloroacetic acids by electrocatalytic reduction using activated silver electrodes in aqueous solutions of different pH. Journal of Electroanalytical Chemistry2012664(1): 39–45

[15]

Sun ZGe HHu XPeng Y. Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solution. Separation and Purification Technology201072(2): 133–139

[16]

Wang HWang J. Comparative study on electrochemical degradation of 2,4-dichlorophenol by different Pd/C gas-diffusion cathodes. Applied Catalysis B: Environmental200989(1−2): 111–117

[17]

Chen GWang ZXia D. Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium. Electrochimica Acta200450(4): 933–937

[18]

Wang HWang J. Electrochemical degradation of 4-chlorophenol using a novel Pd/C gas-diffusion electrode. Applied Catalysis B: Environmental200777(1−2): 58–65

[19]

Cui CQuan XYu HHan Y. Electrocatalytic hydrodehalogenation of pentachlorophenol at palladized multiwalled carbon nanotubes electrode. Applied Catalysis B: Environmental200880(1−2): 122–128

[20]

Huang SGanesan PPopov B N. Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Applied Catalysis B: Environmental2011102(1−2): 71–77

[21]

Ferreira P Jla O’ G JShao-Horn YMorgan DMakharia RKocha SGasteiger H A. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. Journal of the Electrochemical Society2005152(11): A2256–A2271

[22]

Quan XYang SRuan XZhao H. Preparation of titania nanotubes and their environmental applications as electrode. Environmental Science & Technology200539(10): 3770–3775

[23]

Xie WYuan SMao XHu WLiao PTong MAlshawabkeh A N. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. Water Research201347(11): 3573–3582

[24]

Zhao GCui XLiu MLi PZhang YCao TLi HLei YLiu LLi D. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/ Sb-doped SnO2 electrode. Environmental Science & Technology200943(5): 1480–1486

[25]

Sun ZWei XShen HHu X. Preparation of palladium–nickel loaded titanium electrode with surfactant assistance and its application in pentachlorophenol reductive dechlorination. Separation and Purification Technology2014124(6): 224–230

[26]

Sun ZWei XShen HHu X. Preparation and evaluation of Pd/polymeric pyrrole-sodium lauryl sulfonate/foam-Ni electrode for 2,4-dichlorophenol dechlorination in aqueous solution. Electrochimica Acta2014129(16): 433–440

[27]

Prakasam H EShankar KPaulose MVarghese O KGrimes C A. A new benchmark for TiO2 nanotube array growth by anodization. Journal of Physical Chemistry C2007111(20): 7235–7241

[28]

Wang GWang HLing YTang YYang XFitzmorris R CWang CZhang J ZLi Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters201111(7): 3026–3033

[29]

Ureta-Zañartu M SBustos PBerríos CDiez M CMora M LGutiérrez C. Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode. Electrochimica Acta200247(15): 2399–2406

[30]

Sun ZWei XHan YTong SHu X. Complete dechlorination of 2,4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode. Journal of Hazardous Materials2013244245: 287–294

[31]

Brewster J H. Mechanisms of reductions at metal surfaces. I. A general working hypothesis. Journal of the American Chemical Society195476(24): 6361–6363

[32]

Wang XZhu MLiu HMa JLi F. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol. Science of the Total Environment2013449(0): 157–167

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (767KB)

Supplementary files

FSE-15020-OF-DJK_suppl_1

3715

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/