Effects of reducing agent and approaching anodes on chromium removal in electrokinetic soil remediation

Xiaona WEI , Shuhai GUO , Bo WU , Fengmei LI , Gang LI

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 253 -261.

PDF (730KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 253 -261. DOI: 10.1007/s11783-015-0791-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Effects of reducing agent and approaching anodes on chromium removal in electrokinetic soil remediation

Author information +
History +
PDF (730KB)

Abstract

A soil remediation method combining in situ reduction of Cr(VI) with approaching anodes electrokinetic (AAs-EK) remediation is proposed. EK experiments were conducted to compare the effect of approaching anodes (AAs) and fixed electrodes (FEs) with and without sodium bisulfite (NaHSO3) as a reducing agent. When NaHSO3 was added to the soil before EK treatment, 90.3% of the Cr(VI) was reduced to Cr(III). EK experiments showed that the adverse effect of contrasting migration of Cr(III) and Cr(VI) species, which limits the practical application of this technique, was eliminated in the presence of the reducing agent. Furthermore, Tessier fractionation analysis indicated that the reducing agent changed the distribution of the chemical forms of Cr. The AAs-EK method was shown to acidize the soil as the anode moved toward the cathode and this acid front pushed the “focusing” region toward the cathode. After remediation, the pH of the soil was between 1.8 and 5.0 in AAs-EK experiments. The total Cr removal efficiency was 64.4% (except in the “focusing” region) when the reduction reaction was combined with AAs-EK method. We conclude that AAs-EK remediation in the presence of NaHSO3 is an appropriate method for Cr-contaminated soil.

Keywords

chromium / reduction reaction / contrasting migration / approaching anode / electrokinetic

Cite this article

Download citation ▾
Xiaona WEI, Shuhai GUO, Bo WU, Fengmei LI, Gang LI. Effects of reducing agent and approaching anodes on chromium removal in electrokinetic soil remediation. Front. Environ. Sci. Eng., 2016, 10(2): 253-261 DOI:10.1007/s11783-015-0791-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Probstein R FHicks R E. Removal of contaminants from soils by electric fields. Science1993260(5107): 498–503

[2]

Acar Y BAlshawabkeh A N. Principles of electrokinetic remediation. Environmental Science & Technology199327(13): 2638–2647

[3]

Virkutyte JSillanpää MLatostenmaa P. Electrokinetic soil remediation—critical overview. The Science of the Total Environment2002289(1−3): 97–121

[4]

Villen-Guzman MPaz-Garcia J MRodriguez-Maroto J MGomez-Lahoz CGarcia-Herruzo F. Acid enhanced electrokinetic remediation of a contaminated soil using constant current density: strong vs. weak acid. Separation Science and Technology201449(10): 1461–1468

[5]

Li DNiu Y YFan MXu D LXu P. Focusing phenomenon caused by soil conductance heterogeneity in the electrokinetic remediation of chromium (VI)-contaminated soil. Separation and Purification Technology2013120: 52–58

[6]

Li DXiong ZNie YNiu Y YWang LLiu Y Y. Near-anode focusing phenomenon caused by the high anolyte concentration in the electrokinetic remediation of chromium(VI)-contaminated soil. Journal of Hazardous Materials2012229−230: 282–291

[7]

Li GGuo S HLi S CZhang L YWang S S. Comparison of approaching and fixed anodes for avoiding the “focusing” effect during electrokinetic remediation of chromium-contaminated soil. Chemical Engineering Journal2012203(9): 231–238

[8]

Niu Y Y. Generation and impact of focusing band on the electrokinetic remediation of chromium-contaminated soil. Dissertation for the Doctoral Degree. Chongqing: Chongqing University, 2013 (in Chinese)

[9]

Kim B KBaek KKo S HYang J W. Research and field experiences on electrokinetic remediation in South Korea. Separation and Purification Technology201179(2): 116–123

[10]

Ryu B GPark G YYang J WBaek K. Electrolyte conditioning for electrokinetic remediation of As, Cu, and Pb-contaminated soil. Separation and Purification Technology201179(2): 170–176

[11]

Saeedi MLi L YGharehtapeh A M. Effect of alternative electrolytes on enhanced electrokinetic remediation of hexavalent chromium in clayey soil. International Journal of Environmental of Research20137(1): 39–50

[12]

Li S CLi T TLi GLi F MGuo S H. Enhanced electrokinetic remediation of chromium-contaminated soil using approaching anodes. Frontiers of Environmental Science & Engineering20126(6): 869–874

[13]

Duffus J H. Chemical speciation terminology: chromium chemistry and cancer. Mineralogical Magazine200569(5): 557–562

[14]

Zhang WZhuang LTong LLo I M CQiu R. Electro-migration of heavy metals in an aged electroplating contaminated soil affected by the coexisting hexavalent chromium. Chemosphere201286(8): 809–816

[15]

Reddy K RChinthamreddy S. Effects of initial form of chromium on electrokinetic remediation in clays. Advances in Environmental Research20037(2): 353–365

[16]

Su CLudwig R D. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environmental Science & Technology200539(16): 6208–6216

[17]

Sahinkaya EKilic AAltun MKomnitsas KLens P N. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor. Journal of Hazardous Materials2012219−220: 253–259

[18]

Zhang JXu YLi WZhou JZhao JQian GXu Z P. Enhanced remediation of Cr(VI)-contaminated soil by incorporating a calcined-hydrotalcite-based permeable reactive barrier with electrokinetics. Journal of Hazardous Materials2012239−240: 128–134

[19]

Weng C HLin Y TLin T YKao C M. Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron. Journal of Hazardous Materials2007149(2): 292–302

[20]

Franco D VDa Silva L MJardim W F. Chemical reduction of hexavalent chromium and its immobilisation under batch conditions using a slurry reactor. Water, Air, and Soil Pollution2009203(1−4): 305–315

[21]

Reddy K RChinthamreddy S. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments. Waste Management (New York, N.Y.)199919(4): 269–282

[22]

Beukes JPienaar JLachmann GGiesekke E. The reduction of hexavalent chromium by sulphite in wastewater. Water SA.199925(3): 363–370

[23]

Pettine MTonnina DMillero F J. Chromium(VI) reduction by sulphur(IV) in aqueous solutions. Marine Chemistry200699(1−4): 31–41

[24]

Dhal BThatoi H NDas N NPandey B D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of Hazardous Materials2013250−251: 272–291

[25]

Sun T RPamukcu SOttosen L MWang F. Electrochemically enhanced reduction of hexavalent chromium in contaminated clay: kinetics, energy consumption, and application of pulse current. Chemical Engineering Journal2015262(2): 1099–1107

[26]

Lu R K. Mehtods of Soil and Agricultural Chemistry Analysis. Beijing: Science Press, Agricultural Science and Technology Publishing House, 2000 (in Chinese)

[27]

USEPA. Method 3060A Alkaline Digestion for Hexavalent Chromium. Revision 1.Washington DC: US Government Printing, 1996

[28]

Tessier ACampbell P G CBisson M. Sequential extraction procedure for the speciation of particulate trace-metals. Analytical Chemistry197951(7): 844–851

[29]

Reddy K RParupudi U SDevulapalli S NXu C Y. Effects of soil composition on the removal of chromium by electrokinetics. Journal of Hazardous Materials199755(1−3): 135–158

[30]

Shen ZChen XJia JQu LWang W. Comparison of electrokinetic soil remediation methods using one fixed anode and approaching anodes. Environmental Pollution2007150(2): 193–199

[31]

Cang LZhou D MAlshawabkeh A NChen H F. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community. Journal of Hazardous Materials2007142(1−2): 111–117

[32]

Kumar VChithra K. Removal of Cr (VI) from spiked soils by electrokinetics. Research Journal of Chemistry and Environment201317(8): 52–59

[33]

Alshawabkeh A N. Electrokinetic soil remediation: challenges and opportunities. Separation Science and Technology200944(10): 2171–2187

[34]

Buchireddy P RBricka R MGent D B. Electrokinetic remediation of wood preservative contaminated soil containing copper, chromium, and arsenic. Journal of Hazardous Materials2009162(1): 490–497

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (730KB)

2326

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/