Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Min ZHANG , Jian LU , Zhencheng XU , Yiliang HE , Bo ZHANG , Song JIN , Brian BOMAN

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 832 -839.

PDF (435KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 832 -839. DOI: 10.1007/s11783-015-0778-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Author information +
History +
PDF (435KB)

Abstract

Polybrominated diphenyl ethers (PBDEs) have been widely used as fire-retardants. Due to their high production volume, widespread usage, and environmental persistence, PBDEs have become ubiquitous contaminants in various environments.Nanoscale zero-valent iron (ZVI) is an effective reductant for many halogenated organic compounds. To enhance the degradation efficiency, ZVI/Palladium bimetallic nanoparticles (nZVI/Pd) were synthesized in this study to degrade decabromodiphenyl ether (BDE209) in water. Approximately 90% of BDE209 was rapidly removed by nZVI/Pd within 80 min, whereas about 25% of BDE209 was removed by nZVI. Degradation of BDE209 by nZVI/Pd fits pseudo-first-order kinetics. An increase in pH led to sharply decrease the rate of BDE209 degradation. The degradation rate constant in the treatment with initial pH at 9.0 was more than 6.8 × higher than that under pH 5.0. The degradation intermediates of BDE209 by nZVI/Pd were identified and the degradation pathways were hypothesized. Results from this study suggest that nZVI/Pd may be an effective tool for treating polybrominated diphenyl ethers (PBDEs) in water.

Keywords

bimetallic nanoparticles / nanoscale zero-valent iron / polybrominated diphenyl ethers / degradation

Cite this article

Download citation ▾
Min ZHANG, Jian LU, Zhencheng XU, Yiliang HE, Bo ZHANG, Song JIN, Brian BOMAN. Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles. Front. Environ. Sci. Eng., 2015, 9(5): 832-839 DOI:10.1007/s11783-015-0778-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahn M YFilley T RJafvert C TNies LHua IBezares-Cruz J. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment. Environmental Science & Technology200640(1): 215–220

[2]

Darnerud P OEriksen G SJóhannesson TLarsen P BViluksela M. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives2001109(s1 Suppl 1): 49–68

[3]

Covaci AVoorspoels Sde Boer J. Determination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples—a review. Environment International200329(6): 735–756

[4]

Watkins D JMcClean M DFraser A JWeinberg JStapleton H MSjödin AWebster T F. Exposure to PBDEs in the office environment: evaluating the relationships between dust, handwipes, and serum. Environmental Health Perspectives2011119(9): 1247–1252

[5]

Ghosh UZimmerman J RLuthy R G. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environmental Science & Technology200337(10): 2209–2217

[6]

Ciparis SHale R C. Bioavailability of polybrominated diphenyl ether flame retardants in biosolids and spiked sediment to the aquatic oligochaete, Lumbriculus variegatus. Environmental Toxicology and Chemistry / SETAC200524(4): 916–925

[7]

Murai SSonoda NTsutsumi S. Redox reaction of tetrahydrofuran hydroperoxide. Bulletin of the Chemical Society of Japan196336(5): 527–530

[8]

La Guardia M JHale R CHarvey E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environmental Science & Technology200640(20): 6247–6254

[9]

Fang ZQiu XChen JQiu X. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. Journal of Hazardous Materials2011185(2−3): 958–969

[10]

Zhuang YAhn SLuthy R G. Debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: pathways, kinetics, and reactivity. Environmental Science & Technology201044(21): 8236–8242

[11]

Wang C BZhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology199731(7): 2154–2156

[12]

Fang ZQiu XChen JQiu X. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination2011267(1): 34–41

[13]

Qiu XFang ZLiang BGu FXu Z. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. Journal of Hazardous Materials2011193(15): 70–81

[14]

Xie YFang ZCheng WTsang P EZhao D. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism. Science of the Total Environment2014485−486: 363–370

[15]

Kim E JKim J HKim J HBokare VChang Y S. Predicting reductive debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron and its implications for environmental risk assessment. Science of the Total Environment2014470−471: 1553–1557

[16]

Wang XChen CLiu HMa J. Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Industrial & Engineering Chemistry Research200847(22): 8645–8651

[17]

Wang XChen CChang YLiu H. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. Journal of Hazardous Materials2009161(2−3): 815–823

[18]

Bokare A DChikate R CRode C VPaknikar K M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye orange G in aqueous solution. Applied Catalysis B: Environmental200879(3): 270–278

[19]

Zhuang YJin LLuthy R G. Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst. Chemosphere201289(4): 426–432

[20]

Shih YHsu CSu Y. Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Separation and Purification Technology201176(3): 268–274

[21]

Chen XClark II C J. Modeling the effects of methanol on iron dechlorination of a complex chlorinated NAPL. Journal of Hazardous Materials2009164(2−3): 565–570

[22]

Fang Z QQiu X HChen J HQiu X Q. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination2011267(1): 34–41

[23]

Wang YLi ALiu HZhang QMa WSong WJiang G. Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners. Journal of Chromatography A20061103(2): 314–328

[24]

Bezares-Cruz JJafvert C THua I. Solar photodecomposition of decabromodiphenyl ether: products and quantum yield. Environmental Science & Technology200438(15): 4149–4156

[25]

Gerecke A CHartmann P CHeeb N VKohler H PGiger WSchmid PZennegg MKohler M. Anaerobic degradation of decabromodiphenyl ether. Environmental Science & Technology200539(4): 1078–1083

[26]

Xu H YZou J WYu Q SWang Y HZhang J YJin H X. QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. Chemosphere200766(10): 1998–2010

[27]

Li ATai CZhao ZWang YZhang QJiang GHu J. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environmental Science & Technology200741(19): 6841–6846

[28]

Shih Y HTai Y T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere201078(10): 1200–1206

[29]

Grittini CMalcomson MFernando QKorte N. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology199529(11): 2898–2900

[30]

Agarwal SAl-Abed S RDionysiou D D. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs. Environmental Science & Technology200741(10): 3722–3727

[31]

Matheson L JTratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology199428(12): 2045–2053

[32]

Doong R AWu S C. Reductive dechlorination of chlorinated hydrocarbons in solutions containing ferrous and sulfide ions. Chemosphere199224(8): 1063–1075

[33]

Klečka G MGonsior S J. Reductive dechlorination of chlorinated methanes and ethanes by reduced iron (II) porphyrins. Chemosphere198413(3): 391–402

[34]

O’carroll DSleep BKrol MBoparai HKocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources201351: 104–122

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (435KB)

2551

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/