Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Min ZHANG, Jian LU, Zhencheng XU, Yiliang HE, Bo ZHANG, Song JIN, Brian BOMAN

PDF(435 KB)
PDF(435 KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (5) : 832-839. DOI: 10.1007/s11783-015-0778-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles

Author information +
History +

Abstract

Polybrominated diphenyl ethers (PBDEs) have been widely used as fire-retardants. Due to their high production volume, widespread usage, and environmental persistence, PBDEs have become ubiquitous contaminants in various environments.Nanoscale zero-valent iron (ZVI) is an effective reductant for many halogenated organic compounds. To enhance the degradation efficiency, ZVI/Palladium bimetallic nanoparticles (nZVI/Pd) were synthesized in this study to degrade decabromodiphenyl ether (BDE209) in water. Approximately 90% of BDE209 was rapidly removed by nZVI/Pd within 80 min, whereas about 25% of BDE209 was removed by nZVI. Degradation of BDE209 by nZVI/Pd fits pseudo-first-order kinetics. An increase in pH led to sharply decrease the rate of BDE209 degradation. The degradation rate constant in the treatment with initial pH at 9.0 was more than 6.8 × higher than that under pH 5.0. The degradation intermediates of BDE209 by nZVI/Pd were identified and the degradation pathways were hypothesized. Results from this study suggest that nZVI/Pd may be an effective tool for treating polybrominated diphenyl ethers (PBDEs) in water.

Keywords

bimetallic nanoparticles / nanoscale zero-valent iron / polybrominated diphenyl ethers / degradation

Cite this article

Download citation ▾
Min ZHANG, Jian LU, Zhencheng XU, Yiliang HE, Bo ZHANG, Song JIN, Brian BOMAN. Removing polybrominated diphenyl ethers in pure water using Fe/Pd bimetallic nanoparticles. Front. Environ. Sci. Eng., 2015, 9(5): 832‒839 https://doi.org/10.1007/s11783-015-0778-x

References

[1]
Ahn M Y, Filley T R, Jafvert C T, Nies L, Hua I, Bezares-Cruz J. Photodegradation of decabromodiphenyl ether adsorbed onto clay minerals, metal oxides, and sediment. Environmental Science & Technology, 2006, 40(1): 215–220
CrossRef Pubmed Google scholar
[2]
Darnerud P O, Eriksen G S, Jóhannesson T, Larsen P B, Viluksela M. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives, 2001, 109(s1 Suppl 1): 49–68
CrossRef Pubmed Google scholar
[3]
Covaci A, Voorspoels S, de Boer J. Determination of brominated flame retardants, with emphasis on polybrominated diphenyl ethers (PBDEs) in environmental and human samples—a review. Environment International, 2003, 29(6): 735–756
CrossRef Pubmed Google scholar
[4]
Watkins D J, McClean M D, Fraser A J, Weinberg J, Stapleton H M, Sjödin A, Webster T F. Exposure to PBDEs in the office environment: evaluating the relationships between dust, handwipes, and serum. Environmental Health Perspectives, 2011, 119(9): 1247–1252
CrossRef Pubmed Google scholar
[5]
Ghosh U, Zimmerman J R, Luthy R G. PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability. Environmental Science & Technology, 2003, 37(10): 2209–2217
CrossRef Pubmed Google scholar
[6]
Ciparis S, Hale R C. Bioavailability of polybrominated diphenyl ether flame retardants in biosolids and spiked sediment to the aquatic oligochaete, Lumbriculus variegatus. Environmental Toxicology and Chemistry / SETAC, 2005, 24(4): 916–925
CrossRef Pubmed Google scholar
[7]
Murai S, Sonoda N, Tsutsumi S. Redox reaction of tetrahydrofuran hydroperoxide. Bulletin of the Chemical Society of Japan, 1963, 36(5): 527–530
CrossRef Google scholar
[8]
La Guardia M J, Hale R C, Harvey E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environmental Science & Technology, 2006, 40(20): 6247–6254
CrossRef Pubmed Google scholar
[9]
Fang Z, Qiu X, Chen J, Qiu X. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. Journal of Hazardous Materials, 2011, 185(2−3): 958–969
CrossRef Pubmed Google scholar
[10]
Zhuang Y, Ahn S, Luthy R G. Debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: pathways, kinetics, and reactivity. Environmental Science & Technology, 2010, 44(21): 8236–8242
CrossRef Pubmed Google scholar
[11]
Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154–2156
CrossRef Google scholar
[12]
Fang Z, Qiu X, Chen J, Qiu X. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination, 2011, 267(1): 34–41
CrossRef Google scholar
[13]
Qiu X, Fang Z, Liang B, Gu F, Xu Z. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. Journal of Hazardous Materials, 2011, 193(15): 70–81
CrossRef Pubmed Google scholar
[14]
Xie Y, Fang Z, Cheng W, Tsang P E, Zhao D. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism. Science of the Total Environment, 2014, 485−486: 363–370
CrossRef Pubmed Google scholar
[15]
Kim E J, Kim J H, Kim J H, Bokare V, Chang Y S. Predicting reductive debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron and its implications for environmental risk assessment. Science of the Total Environment, 2014, 470−471: 1553–1557
CrossRef Pubmed Google scholar
[16]
Wang X, Chen C, Liu H, Ma J. Characterization and evaluation of catalytic dechlorination activity of Pd/Fe bimetallic nanoparticles. Industrial & Engineering Chemistry Research, 2008, 47(22): 8645–8651
CrossRef Google scholar
[17]
Wang X, Chen C, Chang Y, Liu H. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. Journal of Hazardous Materials, 2009, 161(2−3): 815–823
CrossRef Pubmed Google scholar
[18]
Bokare A D, Chikate R C, Rode C V, Paknikar K M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye orange G in aqueous solution. Applied Catalysis B: Environmental, 2008, 79(3): 270–278
CrossRef Google scholar
[19]
Zhuang Y, Jin L, Luthy R G. Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst. Chemosphere, 2012, 89(4): 426–432
CrossRef Pubmed Google scholar
[20]
Shih Y, Hsu C, Su Y. Reduction of hexachlorobenzene by nanoscale zero-valent iron: kinetics, pH effect, and degradation mechanism. Separation and Purification Technology, 2011, 76(3): 268–274
CrossRef Google scholar
[21]
Chen X, Clark II C J. Modeling the effects of methanol on iron dechlorination of a complex chlorinated NAPL. Journal of Hazardous Materials, 2009, 164(2−3): 565–570
CrossRef Pubmed Google scholar
[22]
Fang Z Q, Qiu X H, Chen J H, Qiu X Q. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor. Desalination, 2011, 267(1): 34–41
CrossRef Google scholar
[23]
Wang Y, Li A, Liu H, Zhang Q, Ma W, Song W, Jiang G. Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners. Journal of Chromatography A, 2006, 1103(2): 314–328
CrossRef Pubmed Google scholar
[24]
Bezares-Cruz J, Jafvert C T, Hua I. Solar photodecomposition of decabromodiphenyl ether: products and quantum yield. Environmental Science & Technology, 2004, 38(15): 4149–4156
CrossRef Pubmed Google scholar
[25]
Gerecke A C, Hartmann P C, Heeb N V, Kohler H P, Giger W, Schmid P, Zennegg M, Kohler M. Anaerobic degradation of decabromodiphenyl ether. Environmental Science & Technology, 2005, 39(4): 1078–1083
CrossRef Pubmed Google scholar
[26]
Xu H Y, Zou J W, Yu Q S, Wang Y H, Zhang J Y, Jin H X. QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. Chemosphere, 2007, 66(10): 1998–2010
CrossRef Pubmed Google scholar
[27]
Li A, Tai C, Zhao Z, Wang Y, Zhang Q, Jiang G, Hu J. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environmental Science & Technology, 2007, 41(19): 6841–6846
CrossRef Pubmed Google scholar
[28]
Shih Y H, Tai Y T. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere, 2010, 78(10): 1200–1206
CrossRef Pubmed Google scholar
[29]
Grittini C, Malcomson M, Fernando Q, Korte N. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 1995, 29(11): 2898–2900
CrossRef Pubmed Google scholar
[30]
Agarwal S, Al-Abed S R, Dionysiou D D. Enhanced corrosion-based Pd/Mg bimetallic systems for dechlorination of PCBs. Environmental Science & Technology, 2007, 41(10): 3722–3727
CrossRef Pubmed Google scholar
[31]
Matheson L J, Tratnyek P G. Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science & Technology, 1994, 28(12): 2045–2053
CrossRef Pubmed Google scholar
[32]
Doong R A, Wu S C. Reductive dechlorination of chlorinated hydrocarbons in solutions containing ferrous and sulfide ions. Chemosphere, 1992, 24(8): 1063–1075
[33]
Klečka G M, Gonsior S J. Reductive dechlorination of chlorinated methanes and ethanes by reduced iron (II) porphyrins. Chemosphere, 1984, 13(3): 391–402
CrossRef Google scholar
[34]
O’carroll D, Sleep B, Krol M, Boparai H, Kocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 2013, 51: 104–122
CrossRef Google scholar

Acknowledgements

This work is financially supported by National Science and Technology Major Projects of Water Pollution Control and Management of China (No. 2014ZX07206001).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(435 KB)

Accesses

Citations

Detail

Sections
Recommended

/