Applicability of the Arrhenius model for Ammonia Oxidizing Bacteria subjected to temperature time gradients

Alberto MANNUCCI , Giulio MUNZ , Gualtiero MORI , Claudio LUBELLO , Jan A. OLESZKIEWICZ

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 988 -994.

PDF (406KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 988 -994. DOI: 10.1007/s11783-014-0751-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Applicability of the Arrhenius model for Ammonia Oxidizing Bacteria subjected to temperature time gradients

Author information +
History +
PDF (406KB)

Abstract

The aim of this work is to identify the range of applicability of Arrhenius type temperature dependence for Ammonia Oxidizing Bacteria (AOB) subjected to temperature time gradients through continuous titrimetric tests. An innovative online differential titrimetric technique was used to continuously monitor the maximum biologic ammonia oxidation rate of the biomass selected in a pilot scale membrane bioreactor, as a function of temperature time gradients. The monitoring technique is based on the measurement of alkalinity and hydrogen peroxide consumption rates in two parallel reactors operated in non-limiting substrate conditions for AOB; both reactors were continuously fed with mixed liquor and in one of them AOB were inhibited with allylthiourea. The effects of temperature decrease rates in the range 1 to 4°C·h−1 were evaluated by controlling the titrimetric reactor in the temperature range 10°C–20°C. The dependence of growth kinetics on temperature time gradients and the range of applicability of Arrhenius model for temperature dependency of AOB growth kinetics were assessed. The Arrhenius model was found to be accurate only with temperature gradients lower than 2°C·h−1. The estimated Arrhenius coefficients (θ) were shown to increase from 1.07 to 1.6 when the temperature decrease rate reached 4°C·h−1.

Keywords

nitrification rate / temperature effect / continuous titrimetric tests / time-gradient temperature variations / Ammonia Oxidizing Bacteria (AOB)

Cite this article

Download citation ▾
Alberto MANNUCCI, Giulio MUNZ, Gualtiero MORI, Claudio LUBELLO, Jan A. OLESZKIEWICZ. Applicability of the Arrhenius model for Ammonia Oxidizing Bacteria subjected to temperature time gradients. Front. Environ. Sci. Eng., 2015, 9(6): 988-994 DOI:10.1007/s11783-014-0751-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vladimirov NLøvdok LLebiedz DSourjik V. Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLos Computational Biology20084(12): e1000242

[2]

Berg H C. Random Walks in Biology.  Princeton, USA: Princeton University Press, 1991

[3]

Salman HLibchaber A. A concentration-dependent switch in the bacterial response to temperature. Nature Cell Biology20079(9): 1098–1100

[4]

Salman HZilman ALoverdo CJeffroy MLibchaber A. Solitary modes of bacterial culture in a temperature gradient. Physical Review Letters200697(11): 118101

[5]

Paster ERyu W S. The thermal impulse response of Escherichia coli.  Proceedings of the National Academy of Sciences of the United States of America2008115(14): 5373–5377 doi: 10.1073/pnas.0709903105

[6]

Beales N. Adaptation of microorganisms to cold temperatures, week acid preservatives, low pH and osmotic stress, a review. Comprehensive Review Food Science Safety20043(1): 1–20

[7]

Lee SCho KLim JKim WHwang S. Acclimation and activity of ammonia-oxidizing bacteria with respect to variations in zinc concentration, temperature, and microbial population. Bioresource Technology2011102(5): 4196–4203

[8]

Hébraud MPotier P. Cold shock response and low temperature adaptation in psychrotrophic bacteria. Journal of Molecular Microbiology and Biotechnology19991(2): 211–219

[9]

Hwang  J  H Oleszkiewicz  J  A.  Effect  of  cold-temperature  shock on  nitrification. Water  Environment  Research,  2007 79(9):  964–968

[10]

Plaza ETrela JHultman B. Impact of seeding with nitrifying bacteria on nitrification process efficiency. Water Science and Technology200143(1): 155–163

[11]

Head M AOleszkiewicz J A. Bioaugmentation for nitrification at cold temperatures. Water Research200438(3): 523–530

[12]

Salem SBerends D HHeijnen J JVan Loosdrecht M C. Bio-augmentation by nitrification with return sludge. Water Research200337(8): 1794–1804

[13]

Zhu SChen S. The impact of temperature on nitrification rate in fixed film biofilters. Aquacultural Engineering200226(4): 221–237

[14]

Knowles GDowning A LBarrett M J. Determination of kinetic constants for nitrifying bacteria in mixed cultures, with the aid of an electronic computer. Journal of General Microbiology196538(2): 263–278

[15]

Painter H ALoveless J E. Effect of temperature and pH value on the growth-rate constant of nitrifying bacteria in the activated-sludge process. Water Research198317(3): 237–248

[16]

Sözen SOrhon DSan H A. A new approach for the evaluation of the maximum specific growth rate in nitrification. Water Research199630(7): 1661–1669

[17]

Henze MGujer WMino Tvan Loosdrecht M C M. Activated Sludge ModelsASM1, ASM2, ASM2d and ASM3.  Scientific and Technical Report No.9. London: IWA Publishing2000

[18]

Görgün EInsel GArtan NOrhon D. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering200742(6): 747–756

[19]

Salvetti RAzzellino ACanziani RBonomo L. Effects of temperature on tertiary nitrification in moving-bed biofilm reactors. Water Research200640(15): 2981–2993

[20]

Munz GSzoke NOleszkiewicz J A. Effect of ammonia oxidizing bacteria (AOB) kinetics on bioaugmentation. Bioresource Technology2012125(12): 88–96

[21]

Oleszkiewicz J ABerquist S A. Low temperature nitrogen removal in sequencing batch reactors. Water Research198822(9): 1163–1171

[22]

Ficara ERocco ARozzi A. Determination of nitrification kinetics by the ANITA-DO stat biosensor. Water Science and Technology200041(12): 121–128

[23]

Mannucci AMunz GMori GLubello C. On-line continuous titrimetry for biological nitrification process control.  In: Proceedings of Asset Management for Enhancing Energy Efficiency in Water and Wastewater System, Marbella 2013. London UK, IWA Publishing, 2013, 271–280

[24]

Guo JPeng YHuang HWang SGe SZhang JWang Z. Short- and long-term effects of temperature on partial nitrification in a sequencing batch reactor treating domestic wastewater. Journal of Hazardous Materials2010179(1–3): 471–479

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (406KB)

2892

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/