Nitrogen recovery from wastewater using microbial fuel cells

Yong XIAO , Yue ZHENG , Song WU , Zhao-Hui YANG , Feng ZHAO

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 185 -191.

PDF (1056KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 185 -191. DOI: 10.1007/s11783-014-0730-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Nitrogen recovery from wastewater using microbial fuel cells

Author information +
History +
PDF (1056KB)

Abstract

Nitrogen is one of major contaminants in wastewater; however, nitrogen, as bio-elements for crop growth, is the indispensable fertilizer in agriculture. In this study, two-chamber microbial fuel cells (MFCs) were first operated with microorganisms in anode chamber and potassium ferricyanide as catholyte. After being successfully startup, the two-chamber MFCs were re-constructed to three-chamber MFCs which were used to recover the NO3N and NH4+N of synthetic wastewater into value-added nitrogenous fertilizer from cathode chamber and anode chamber, respectively. Ferric nitrate was used as the sole electron acceptor in cathode, which also was used to evaluate the NO3N recover efficiency in the case major anion of NO3 in cathode. The output voltage of these MFCs was about 600–700 mV at an external load of 500 Ω. About 47% NH4+N in anode chamber and 83% NO3N in cathode chamber could be recovered. Higher current density can selectively improve the recovery efficiency of both NH4+N and NO3N. The study demonstrated a nitrogen recovery process from synthetic wastewater using three-chamber MFCs.

Keywords

nitrogen recovery / microbial fuel cells (MFCs) / electromigration / wastewater treatment

Cite this article

Download citation ▾
Yong XIAO, Yue ZHENG, Song WU, Zhao-Hui YANG, Feng ZHAO. Nitrogen recovery from wastewater using microbial fuel cells. Front. Environ. Sci. Eng., 2016, 10(1): 185-191 DOI:10.1007/s11783-014-0730-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heffer PPrud'Homme M. Fertilizer Outlook 2012–2016. International Fertilizer Industry Association (IFA)2012

[2]

Tchobanoglous GBurton F LStensel H D. Solution Manual for Use With Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill, 2003

[3]

Ghafari SHasan MAroua M K. Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresource Technology200899(10): 3965–3974

[4]

Kim J HChen MKishida NSudo R. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Research200438(14–15): 3340–3348

[5]

van Dongen UJetten M Svan Loosdrecht M C. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Science and Technology200144(1): 153–160

[6]

Hellinga CSchellen AMulder JVan Loosdrecht MHeijnen J. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology199837(9): 135–142

[7]

Zhao FRahunen NVarcoe J RChandra AAvignone-Rossa CThumser A ESlade R C T. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science & Technology200842(13): 4971–4976

[8]

Logan B EHamelers BRozendal RSchröder UKeller JFreguia SAelterman PVerstraete WRabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology200640(17): 5181–5192

[9]

Virdis BRabaey KYuan ZKeller J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research200842(12): 3013–3024

[10]

Lovley D R. Bug juice: harvesting electricity with microorganisms. Nature Reviews. Microbiology20064(7): 497–508

[11]

Cao XHuang XLiang PXiao KZhou YZhang XLogan B E. A new method for water desalination using microbial desalination cells. Environmental Science & Technology200943(18): 7148–7152

[12]

Liu HLogan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology200438(14): 4040–4046

[13]

Liu HRamnarayanan RLogan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology200438(7): 2281–2285

[14]

Logan B E. Extracting hydrogen and electricity from renewable resources. Environmental Science & Technology200438(9): 160A–167A

[15]

Min BLogan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology200438(21): 5809–5814

[16]

He ZMinteer S DAngenent L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology200539(14): 5262–5267

[17]

Liu HCheng SLogan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology200539(2): 658–662

[18]

Kuntke PŚmiech K MBruning HZeeman GSaakes MSleutels T H J AHamelers H V MBuisman C J N. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research201246(8): 2627–2636

[19]

Rabaey KBützer SBrown SKeller JRozendal R A. High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environmental Science & Technology201044(11): 4315–4321

[20]

Xiao YWu SZhang FWu Y CYang Z HZhao F. Promoting electrogenic ability of microbes with negative pressure. Journal of Power Sources2013229(1): 79–83

[21]

He ZKan JWang YHuang YMansfeld FNealson K H. Electricity production coupled to ammonium in a microbial fuel cell. Environmental Science & Technology200943(9): 3391–3397

[22]

Desloover JWoldeyohannis A AVerstraete WBoon NRabaey K. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environmental Science & Technology201246(21): 12209–12216

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1056KB)

Supplementary files

10.1007/s11783-014-0730-5

3858

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/