Nitrogen recovery from wastewater using microbial fuel cells

Yong XIAO, Yue ZHENG, Song WU, Zhao-Hui YANG, Feng ZHAO

PDF(1056 KB)
PDF(1056 KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 185-191. DOI: 10.1007/s11783-014-0730-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Nitrogen recovery from wastewater using microbial fuel cells

Author information +
History +

Abstract

Nitrogen is one of major contaminants in wastewater; however, nitrogen, as bio-elements for crop growth, is the indispensable fertilizer in agriculture. In this study, two-chamber microbial fuel cells (MFCs) were first operated with microorganisms in anode chamber and potassium ferricyanide as catholyte. After being successfully startup, the two-chamber MFCs were re-constructed to three-chamber MFCs which were used to recover the NO3N and NH4+N of synthetic wastewater into value-added nitrogenous fertilizer from cathode chamber and anode chamber, respectively. Ferric nitrate was used as the sole electron acceptor in cathode, which also was used to evaluate the NO3N recover efficiency in the case major anion of NO3 in cathode. The output voltage of these MFCs was about 600–700 mV at an external load of 500 Ω. About 47% NH4+N in anode chamber and 83% NO3N in cathode chamber could be recovered. Higher current density can selectively improve the recovery efficiency of both NH4+N and NO3N. The study demonstrated a nitrogen recovery process from synthetic wastewater using three-chamber MFCs.

Keywords

nitrogen recovery / microbial fuel cells (MFCs) / electromigration / wastewater treatment

Cite this article

Download citation ▾
Yong XIAO, Yue ZHENG, Song WU, Zhao-Hui YANG, Feng ZHAO. Nitrogen recovery from wastewater using microbial fuel cells. Front. Environ. Sci. Eng., 2016, 10(1): 185‒191 https://doi.org/10.1007/s11783-014-0730-5

References

[1]
Heffer P. Prud'Homme M. Fertilizer Outlook 2012–2016. International Fertilizer Industry Association (IFA), 2012
[2]
Tchobanoglous G, Burton F L, Stensel H D. Solution Manual for Use With Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill, 2003
[3]
Ghafari S, Hasan M, Aroua M K. Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresource Technology, 2008, 99(10): 3965–3974
CrossRef Pubmed Google scholar
[4]
Kim J H, Chen M, Kishida N, Sudo R. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Research, 2004, 38(14–15): 3340–3348
CrossRef Pubmed Google scholar
[5]
van Dongen U, Jetten M S, van Loosdrecht M C. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Science and Technology, 2001, 44(1): 153–160
Pubmed
[6]
Hellinga C, Schellen A, Mulder J, Van Loosdrecht M, Heijnen J. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 1998, 37(9): 135–142
CrossRef Google scholar
[7]
Zhao F, Rahunen N, Varcoe J R, Chandra A, Avignone-Rossa C, Thumser A E, Slade R C T. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science & Technology, 2008, 42(13): 4971–4976
CrossRef Pubmed Google scholar
[8]
Logan B E, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology, 2006, 40(17): 5181–5192
CrossRef Pubmed Google scholar
[9]
Virdis B, Rabaey K, Yuan Z, Keller J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 2008, 42(12): 3013–3024
CrossRef Pubmed Google scholar
[10]
Lovley D R. Bug juice: harvesting electricity with microorganisms. Nature Reviews. Microbiology, 2006, 4(7): 497–508
CrossRef Pubmed Google scholar
[11]
Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan B E. A new method for water desalination using microbial desalination cells. Environmental Science & Technology, 2009, 43(18): 7148–7152
CrossRef Pubmed Google scholar
[12]
Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 2004, 38(14): 4040–4046
CrossRef Pubmed Google scholar
[13]
Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 2004, 38(7): 2281–2285
CrossRef Pubmed Google scholar
[14]
Logan B E. Extracting hydrogen and electricity from renewable resources. Environmental Science & Technology, 2004, 38(9): 160A–167A
CrossRef Pubmed Google scholar
[15]
Min B, Logan B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science & Technology, 2004, 38(21): 5809–5814
CrossRef Pubmed Google scholar
[16]
He Z, Minteer S D, Angenent L T. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environmental Science & Technology, 2005, 39(14): 5262–5267
CrossRef Pubmed Google scholar
[17]
Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 2005, 39(2): 658–662
CrossRef Pubmed Google scholar
[18]
Kuntke P, Śmiech K M, Bruning H, Zeeman G, Saakes M, Sleutels T H J A, Hamelers H V M, Buisman C J N. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 2012, 46(8): 2627–2636
CrossRef Pubmed Google scholar
[19]
Rabaey K, Bützer S, Brown S, Keller J, Rozendal R A. High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environmental Science & Technology, 2010, 44(11): 4315–4321
CrossRef Pubmed Google scholar
[20]
Xiao Y, Wu S, Zhang F, Wu Y C, Yang Z H, Zhao F. Promoting electrogenic ability of microbes with negative pressure. Journal of Power Sources, 2013, 229(1): 79–83
CrossRef Google scholar
[21]
He Z, Kan J, Wang Y, Huang Y, Mansfeld F, Nealson K H. Electricity production coupled to ammonium in a microbial fuel cell. Environmental Science & Technology, 2009, 43(9): 3391–3397
CrossRef Pubmed Google scholar
[22]
Desloover J, Woldeyohannis A A, Verstraete W, Boon N, Rabaey K. Electrochemical resource recovery from digestate to prevent ammonia toxicity during anaerobic digestion. Environmental Science & Technology, 2012, 46(21): 12209–12216
CrossRef Pubmed Google scholar

Acknowledgements

This study was supported by the Natural Science Foundation of Fujian (No. 2012J05105), the National Natural Science Foundation of China (Grant No. 51208490), the Knowledge Innovation Program of the Chinese Academy of Sciences (No. IUEQN201306) and the Hundred Talents Program of the Chinese Academy of Sciences.
ƒis available in the online version of this article at http://dx.doi.org/10.1007/s11783-014-0730-5 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1056 KB)

Accesses

Citations

Detail

Sections
Recommended

/