Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue

Chengyuan SU , Weiguang LI , Xingzhe LIU , Xiaofei HUANG , Xiaodan YU

Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 37 -45.

PDF (913KB)
Front. Environ. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 37 -45. DOI: 10.1007/s11783-014-0729-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue

Author information +
History +
PDF (913KB)

Abstract

A study of the decolorization of reactive brilliant blue in an aqueous solution using Fe-Mn-sepiolite as a heterogeneous Fenton-like catalyst has been performed. The Fourier transform infrared (FTIR) spectra of the catalyst showed bending vibrations of the Fe-O. The X-ray diffraction (XRD) patterns of the catalyst showed characteristic diffraction peaks of α-Fe2O3, γ-Fe2O3 and MnO. A four factor central composite design (CCD) coupled with response surface methodology (RSM) was applied to evaluate and optimize the important variables (catalyst addition, hydrogen peroxide dosage, initial pH value and initial dye concentration). When the reaction conditions were catalyst dosage= 0.4 g, [H2O2]= 0.3 mL, pH= 2.5, [reactive brilliant blue]o = 50 mg·L−1, and volume of solution= 500 mL at room temperature, the decolorization efficiency of reactive brilliant blue was 91.98% within 60 min. Moreover, the Fe-Mn-sepiolite catalyst had good stability for the degradation of reactive brilliant blue even after six cycles. Leaching of iron ions (<0.4 mg·L−1) was observed. The decoloring process was reactive brilliant blue specific via a redox reaction. The benzene ring and naphthalene ring were first oxidized to open ring; these were then oxidized to the alcohol and carboxylic acid. The reactive brilliant blue was decomposed mainly by the attack of ·OH radicals including surface-bound ·OH radicals generated on the catalyst surface.

Keywords

Fe-Mn-sepiolite catalyst / heterogeneous Fenton-like / reactive brilliant blue / homogeneous precipitation method / hydroxyl radical

Cite this article

Download citation ▾
Chengyuan SU, Weiguang LI, Xingzhe LIU, Xiaofei HUANG, Xiaodan YU. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue. Front. Environ. Sci. Eng., 2016, 10(1): 37-45 DOI:10.1007/s11783-014-0729-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ruan X CLiu M YZeng Q FDing Y H. Degradation and decolorization of reactive red X-3B aqueous solution by ozone integrated with internal micro-electrolysis. Separation and Purification Technology201074(2): 195–201

[2]

Zhou TLu XWang JWong F SLi Y. Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy. Journal of Hazardous Materials2009165(1–3): 193–199

[3]

Wang WZhou M HMao QYue J JWang X. Novel NaY zeolite-supported nanoscale zero-valent iron as an efficient heterogeneous Fenton catalyst.  Catalysis  Communications,  2010 11(11):  937–941

[4]

Hai F IYamamoto KNakajima FFukushi K. Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment. Water Research201145(6): 2199–2206

[5]

Tabak AEren EAfsin BCaglar B. Determination of adsorptive properties of a Turkish Sepiolite for removal of Reactive Blue 15 anionic dye from aqueous solutions. Journal of Hazardous Materials2009161(2–3): 1087–1094

[6]

Gonzalez R OHolzer F F D. Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites. Applied Catalysis A2011398(1–2): 44–53

[7]

Masomboon NRatanatamskul CLu M C. Kinetics of 2,6-dimethylaniline oxidation by various Fenton processes. Journal of Hazardous Materials2011192(1): 347–353

[8]

Gulkaya ISurucu G ADilek F B. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials2006136(3): 763–769

[9]

Santos M S FAlves AMadeira L M. Paraquat removal from water by oxidation with Fenton’s reagent. Chemical Engineering Journal2011175(15):  279–290

[10]

Chen LMa JLi XZhang JFang JGuan YXie P. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. Environmental Science & Technology201145(9): 3925–3930

[11]

Xu LWang J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. Journal of Hazardous Materials2011186(1): 256–264

[12]

Ballesteros Martín M MSánchez Pérez J AGarcía Sánchez J LCasas López J LMalato Rodríguez S. Effect of pesticide concentration on the degradation process by combined solar photo-Fenton and biological treatment. Water Research200943(15): 3838–3848

[13]

Panizza MCerisola G. Electro-Fenton degradation of synthetic dyes. Water Research200943(2): 339–344

[14]

Feng C HLi F BMai H JLi X Z. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environmental Science & Technology201044(5): 1875–1880

[15]

Bayat MSohrabi MRoyaee S J. Degradation of phenol by heterogeneous Fenton reaction using Fe/clinoptilolite. Journal of Industrial and Engineering Chemistry201218(3): 957–962

[16]

Hassan HHameed B H. Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of Reactive Blue 4. Chemical Engineering Journal2011171(3): 912–918

[17]

Hassan HHameed B H. Oxidative decolorization of Acid Red 1 solutions by Fe–zeolite Y type catalyst. Desalination2011276(1–3): 45–52

[18]

Han ZDong YDong S. Copper-iron bimetal modified PAN fiber complexes as novel heterogeneous Fenton catalysts for degradation of organic dye under visible light irradiation. Journal of Hazardous Materials2011189(1–2): 241–248

[19]

Fan B BLi H YFan W BJin CLi R F. Oxidation of cyclohexane over iron and copper salen complexes simultaneously encapsulated in zeolite Y. Applied Catalysis A2008340(1): 67–75

[20]

Guimaraes I RGiroto AOliveira L C AGuerreiro M CLima D QFabris J D. Synthesis and thermal treatment of cu-doped goethite: oxidation of quinoline through heterogeneous Fenton process. Applied Catalysis B: Environmental200991(3–4): 581–586

[21]

Se NAlvaro MGarcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental201099(1–2): 1–26

[22]

Ramírez G E GTheng G B KMora M L. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—A review. Applied Clay Science201047(3–4): 182–192

[23]

Sabah EMajdan M. Removal of phosphorus from vegetable oil by acid-activated sepiolite. Journal of Food Engineering200991(3): 423–427

[24]

Eren ECubuk OCiftci HEren BCaglar B. Adsorption of basic dye from aqueous solutions by modified sepiolite: Equilibrium, kinetics and thermodynamics study. Desalination2010252(1–3): 88–96

[25]

Bingol DTekin NAlkan M. Brilliant Yellow dye adsorption onto sepiolite using a full factorial design. Applied Clay Science201050(3): 315–321

[26]

Demirbas ENas M Z. Batch kinetic and equilibrium studies of adsorption of Reactive Blue 21 by fly ash and sepiolite. Desalination2009243(1–3): 8–21

[27]

Sun S PLemley A T. p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways. Journal of Molecular Catalysis A2011349(1–2): 71–79

[28]

Karla C GOmar T LAzucena M G LEnric BAracely H RJuan M. Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination2012286(2): 63–68

[29]

Zhang GGao YZhang YGuo Y. Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants. Environmental Science & Technology201044(16): 6384–6389

[30]

Ayodele O B. Effect of phosphoric acid treatment on kaolinite supported ferrioxalate catalyst for the degradation of amoxicillin in batch photo-Fenton process. Applied Clay Science201372(2): 74–83

[31]

Bai C PGong W QFeng D XXian MZhou QChen S HGe Z XZhou Y S. Natural graphite tailings as heterogeneous Fenton catalyst for the decolorization of rhodamine B. Chemical Engineering Journal2012197(7): 306–313

[32]

Frost R LLocos O BRuan HKloprogge J T. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy200127(1): 1–13

[33]

Zhang ZZheng H. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. Journal of Hazardous Materials2009172(2–3): 1388–1393

[34]

Zhang AWang NZhou JJiang PLiu G. Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash. Journal of Hazardous Materials2012201–202(1): 68–73

[35]

Tian S HTu Y TChen D SChen XXiong Y. Degradation of Acid Orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst. Chemical Engineering Journal2011169(1–3): 31–37

[36]

Xu LWang J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environmental Science & Technology201246(18): 10145–10153

[37]

Wang CZhu LWei MChen PShan G. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water. Water Research201246(3): 845–853

[38]

Gao Y YGan H HZhang G KGuo Y D. Visible light assisted Fenton-like degradation of rhodamine B and 4-nitrophenol solutions with a stable poly-hydroxyl-iron sepiolite catalyst. Chemical Engineering Journal2013217(2): 221–230

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (913KB)

3109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/