Comparison of masking agents for antimony speciation analysis using hydride generation atomic fluorescence spectrometry

Jianhong XI , Mengchang HE , Kunpeng WANG , Guizhi ZHANG

Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 970 -978.

PDF (171KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (6) : 970 -978. DOI: 10.1007/s11783-014-0716-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparison of masking agents for antimony speciation analysis using hydride generation atomic fluorescence spectrometry

Author information +
History +
PDF (171KB)

Abstract

A sensitive atomic spectrometric method for the redox speciation analysis of Sb in water is described. The proposed method is based on the selective generation of stibine from Sb(III) in a continuous flow system using non-dispersive atomic fluorescence spectrometry for detection. The effects of the HCl concentration on the fluorescence intensities of Sb(III) and Sb(V) were investigated. The results indicated that atomic fluorescence emission due to Sb(V) can constructively interfere with the determination of Sb(III). For the determination of Sb(III), four compounds were tested as masking agents to inhibit the generation of stibine from Sb(V). The effects of the concentrations of the masking agents and of HCl on the fluorescence signals from Sb(III) and Sb(V) were studied. The results indicated that citric acid and NaF can successfully suppress hydride generation from Sb(V). To evaluate the developed methodology and the influence of the matrix, the recovery of Sb(III) from natural water that was spiked with different Sb(III) and Sb(V) concentrations was tested.

Keywords

Sb(III) / Sb(V) / determination / masking agents / hydride generation (HG-AFS)

Cite this article

Download citation ▾
Jianhong XI, Mengchang HE, Kunpeng WANG, Guizhi ZHANG. Comparison of masking agents for antimony speciation analysis using hydride generation atomic fluorescence spectrometry. Front. Environ. Sci. Eng., 2015, 9(6): 970-978 DOI:10.1007/s11783-014-0716-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wedepohl K H. The composition of the continental crust. Geochimica et Cosmochimica Acta199559(7): 1217–1232

[2]

Filella MBelzile NChen Y W. Antimony in the environment: a review focused on natural waters: I. Occurrence. Earth-Science Reviews200257(1-2): 125–176

[3]

Ettler VMihaljevič MŠebek ONechutný Z. Antimony availability in highly polluted soils and sediments- a comparison of single extractions. Chemosphere200768(3): 455–463

[4]

Reimann CMatschullat JBirke MSalminen R. Antimony in the environment: lessons from geochemical mapping. Applied Geochemistry201025(2): 175–198

[5]

Wilson S CLockwood P VAshley P MTighe M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution2010158(5): 1169–1181

[6]

Wang X QHe M CXi J HLu X F. Heavy metal pollution of the world largest antimony mine-affected agricultural soils in Hunan province (China). Journal of Soils and Sediments201010(5): 827–837

[7]

Wang X QHe M CXi J HLu X F. Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China. Microchemical Journal201197(1): 4–11

[8]

He MWang XWu FFu Z. Antimony pollution in China. Science of the Total Environment2012421-422: 41–50

[9]

Groth D HStettler L EBurg J RBusey W MGrant G CWong L. Carcinogenic effects of antimony trioxide and antimony ore concentrate in rats. Journal of Toxicology and Environmental Health198618(4): 607–626

[10]

Kuroda KEndo GOkamoto AYoo Y SHoriguchi S. Genotoxicity of beryllium, gallium and antimony in short-term assays. Mutation Research1991264(4): 163–170

[11]

Guy AJones PHill S J. Identification and chromatographic separation of antimony species with α-hydroxy acid. Analyst (London)1998123(7): 1513–1518

[12]

Zhang XCornelis RMees L. Speciation of antimony(III) and antimony(V) species by using high-performance liquid chromatography coupled to hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry199813(3): 205–207

[13]

Zheng JOhata MFuruta N. Antimony speciation in environmental samples by using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Analytical Sciences200016(1): 75–80

[14]

Semenova N VLeal L OForteza RCerd`a V. Antimony determination and speciation by multisyringe flow injection analysis with hydride generation-atomic fluorescence detection. Analytica Chimica Acta2005530(1): 113–120

[15]

Li Z XGuo Y A. Simultaneous determination of trace arsenic, antimony, bismuth and selenium in biological samples by hydride generation-four-channel atomic fluorescence spectrometry. Talanta200565(5): 1318–1325

[16]

Miravet RLópez-Sánchez J FRubio R. Comparison of pre-reducing agents for antimony determination by hydride generation atomic fluorescence spectrometry. Analytica Chimica Acta2004511(2): 295–302

[17]

Ferreira H SFerreira S L CCervera M LGuardia M. Development of a non-chromatographic method for the speciation analysis of inorganic antimony in mushroom samples by hydride generation atomic fluorescence spectrometry. Spectrochimica Acta Part B200964(6): 597–600

[18]

Henden Eİşlek YKavas MAksuner NYayayürük OÇiftçi T Dİlktaç R. A study of mechanism of nickel interferences in hydride generation atomic adsorption spectrometric determination of arsenic and antimony. Spectrochimica Acta Part B201166(11-12): 793–798

[19]

Wu HWang XLiu BLiu YLi SLu JTian JZhao WYang Z. Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column. Spectrochimica Acta Part B201166(1): 74–80

[20]

Andreae M OAsmode J FFoster PVan’t dack L. Determination of antimony(III), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation. Analytical Chemistry198153(12): 1766–1771

[21]

Nakashima S. Selective determination of antimony(III) and antimony(V) by atomic-absorption spectrophotometry following stibine generation. Analyst (London)1980105(1252): 732–733

[22]

Apte S CHoward A G. Determination of dissolved inorganic antimony(V) and antimony(III) species in natural waters by hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry19861(3): 221–225

[23]

D’ulivo ALampugnani LPellegrini GZamboni R. Determination of antimony by continuous hydride generation coupled with non-dispersive atomic fluorescence detection. Journal of Analytical Atomic Spectrometry199510(11): 969–974

[24]

Deng T LChen Y WBelzile N. Antimony speciation at ultra trace levels using hydride generation atomic fluorescence spectrometry and 8-hydroxyquinoline as an efficient masking agent. Analytica Chimica Acta2001432(2): 293–302

[25]

Mohammad BUre AReglinski JLittlejohn D. Speciation of antimony in natural waters: the determination of Sb(III) and Sb(V) by continuous flow hydride generation-atomic absorption spectrometry. Chemical Speciation and Bioavailability19903: 117–122

[26]

Sun HQiao FSuo RLi LLiang S. Simultaneous determination of trace arsenic(III), antimony(III), total arsenic and antimony in Chinese medicinal herbs by hydride generation-double channel atomic fluorescence spectrometry. Analytica Chimica Acta2004505(2): 255–261

[27]

Chen BKrachler MShotyk W. Determination of antimony in plant and peat samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). Journal of Analytical Atomic Spectrometry200318(10): 1256–1262

[28]

Guo X WLi L. Interferences in hydride generation-atomic absorption spectrometry/atomic fluorescence spectrometry and their elimination. Analytical Chemistry198614: 151–158 (in Chinese)

[29]

Yamamoto MYasuda MYamamoto Y. Hydride-generation atomic absorption spectrometry coupled with flow injection analysis. Analytical Chemistry198557(7): 1382–1385

[30]

Fuentes EPinochet HGregori I DPotin-Gautier M. Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry. Spectrochimica Acta Part B200358(7): 1279–1289

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (171KB)

2818

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/