Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil

Junxing YANG, Liqun WANG, Jumei LI, Dongpu WEI, Shibao CHEN, Qingjun GUO, Yibing MA

PDF(281 KB)
PDF(281 KB)
Front. Environ. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 419-428. DOI: 10.1007/s11783-014-0674-9
RESEARCH ARTICLE

Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil

Author information +
History +

Abstract

Screening of cost-effective soil amendments is important to develop “in situ” remediation techniques for cadmium (Cd) contaminated soils. In this study, different soil amendments, including red mud, a by-product of the alumina industry, and acid-treated, nano-treated by nano-particle milling, nano and acid-treated red muds, zeolite, corn straw, and rape straw, were evaluated to immobilize Cd in two added levels (2 and 5 mg Cd·kg-1 soil) in a calcareous soil by single and sequential extractions and by cucumber (Cucumis sativus L.) pot experiments. Results indicated that cruciferous rape straw significantly decreased the concentrations of water soluble, extractable Cd in soils, and Cd in cucumber plants, and it was more effective than gramineous corn straw. Also, red mud generally decreased the extractability and bioavailability of Cd added to calcareous soils more effectively than zeolite. Furthermore, the efficiency of red mud could be increased by the treatment of nano-particle milling due to the increase in specific surface area of red mud. It is potential to use rape straw and red mud as soil amendments to develop a cost-effective and efficient “in situ” remediation technology for Cd mildly contaminated calcareous soils.

Keywords

red mud / rape straw / cadmium / immobilization / calcareous soil

Cite this article

Download citation ▾
Junxing YANG, Liqun WANG, Jumei LI, Dongpu WEI, Shibao CHEN, Qingjun GUO, Yibing MA. Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil. Front. Environ. Sci. Eng., 2015, 9(3): 419‒428 https://doi.org/10.1007/s11783-014-0674-9

References

[1]
McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients-food safe issues. Field Crops Research, 1999, 60(1–2): 143–163
[2]
Satarug S, Baker J R, Urbenjapol S, Haswell-Elkins M, Reilly P E B, Williams D J, Moore M R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters, 2003, 137(1–2): 65–83
Pubmed
[3]
Hooda P S. Trace Elements in Soil. Chippenham: John Wiley and sons, 2010
[4]
Garau G, Castaldi P, Santona L, Deinan P, Melis P. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 2007, 142(1–2): 47–57
[5]
Garau G, Silvetti M, Deiana S, Deiana P, Castaldi P. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. Journal of Hazardous Materials, 2011, 185(2–3): 1241–1248
Pubmed
[6]
Liu Y J, Naidu R, Ming H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma, 2011, 163(1–2): 1–12
[7]
Lombi E, Zhao F J, Wieshammer G, Zhang G, McGrath S P. In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution, 2002, 118(3): 445–452
Pubmed
[8]
Friesl W, Lombi E, Horak O, Wenzel W. Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 191–196
[9]
Castaldi P, Melis P, Silvetti M, Deiana P, Garau G. Influence of pea and wheat growth on Pb, Cd, and Zn mobility and soil biological status in a polluted amended soil. Geoderma, 2009, 151(3–4): 241–248
[10]
Lee S H, Kim E Y, Park H, Yun J, Kim J G. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by products. Geoderma, 2011, 161(1–2): 1–7
[11]
Santona L, Castaldi P, Melis P. Evaluation of the interaction mechanisms between red muds and heavy metals. Journal of Hazardous Materials, 2006, 136(2): 324–329
Pubmed
[12]
Mahler R J, Bingham F T, Page A L. Cadmium-enriched sewage sludge application to acid and calcareous soils: effect on yield and cadmium uptake by lettuce and chard. Journal of Environmental Quality, 1978, 7(2): 274–281
[13]
Mahler R J, Bingham F T. Sposito Garrison, Page A L.Cadmium-enriched sewage sludge application to acid and calcareous soils: relation between treatment, cadmium in saturation extracts, and cadmium uptake. Journal of Environmental Quality, 1980, 9(3): 359–364
[14]
Lombi E, Hamon R E, McGrath S P, McLaughlin M J. Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using istopic techniques. Environmental Science & Technology, 2003, 37(5): 979–984
Pubmed
[15]
Luo L, Ma C Y, Ma Y B, Zhang S Z, Lv J T, Cui M Q. New insights into the sorption mechanism of cadmium on red mud. Environmental Pollution, 2011, 159(5): 1108–1113
Pubmed
[16]
Harada E, Yamaguchi Y, Koizumi N, Hiroshi S. Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. Journal of Plant Physiology, 2002, 159(4): 445–448
[17]
Jones M G, Hughes J, Tregova A, Milne J, Tomsett A B, Collin H A. Biosynthesis of the flavour precursors of onion and garlic. Journal of Experimental Botany, 2004, 55(404): 1903–1918
Pubmed
[18]
Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution, 2006, 144(3): 736– 745
Pubmed
[19]
Ma Y B, Uren N C. Transformations of heavy metals added to soil - application of a new sequential extraction procedure. Geoderma, 1998, 84(1–3): 157–168
[20]
Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environment International, 2004, 30(3): 351–356
Pubmed
[21]
Blanchard G, Maunaye M, Martin G. Removal of heavy metals from waters by means of natural zeolites. Water Research, 1984, 18(12): 1501–1507
[22]
Chen S B, Xu M G, Ma Y B, Yang J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety, 2007, 67(2): 278–285
Pubmed
[23]
Cui Y S, Du X, Weng L P, Zhu Y G. Effect of rice straw on the speciation of cadmium (Cd) and copper (Cu) in soils. Geoderma, 2008, 146(1–2): 370–377
[24]
Almas A, Singh B R, Salbu B. Mobility of cadmium-109 and zinc-65 in soil influenced by equilibration time, temperature, and organic matter. Journal of Environmental Quality, 1999, 28(6): 1742–1750
[25]
Strobel B W, Borggaard O K, Hansen H C B, Andersen M K, Raulund-Rasmussen K. Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. European Journal of Soil Science, 2005, 56(2): 189–196
[26]
Wang L Q. Remediation of Cd-contaminated soils by in situ immobilization techniques. Dissertation for the Doctoral Degree. Beijing: Capital Normal University, 2009 (in Chinese)
[27]
Chen H M, Zheng C R, Tu C, Shen Z G. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 2000, 41(1–2): 229–234
Pubmed
[28]
Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 2005, 60(3): 365–371
Pubmed
[29]
Kashem M A, Kawai S, Kikuchi N, Takahashi H, Sugawara R, Singh B R. Effect of lherzolite on chemical fractions of Cd and Zn and their uptake by plants in contaminated soil. Water, Air, and Soil Pollution, 2009, 207(1–4): 241–251

Acknowledgements

This work was financially supported by Special Fund for Agro-scientific Research in the Public Interest (No. 200903015) 973 Program (No. 2014CB238906) and 863 Program (No. 2013AA06A21r2). We are also very grateful to the National Natural Science Foundation of China (Grant No. 41201312, 41250110528) for financial support.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(281 KB)

Accesses

Citations

Detail

Sections
Recommended

/