Hygroscopicity of ambient submicron particles in urban Hangzhou, China

Jiachen ZHANG , Lin WANG , Jianmin CHEN , Shengmao FENG , Jiandong SHEN , Li JIAO

Front. Environ. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (3) : 342 -347.

PDF (177KB)
Front. Environ. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (3) : 342 -347. DOI: 10.1007/s11783-011-0358-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Hygroscopicity of ambient submicron particles in urban Hangzhou, China

Author information +
History +
PDF (177KB)

Abstract

In this study, hygroscopicity of size-segregated ambient submicron particles in urban Hangzhou was studied from 28th December 2009 to 18th January 2010, using a hygroscopicity-tandem differential mobility analyzer (H-TDMA). The submicron particles in Hangzhou showed a minor hygroscopic growth at 73% relative humidity (RH), and then grew significantly between 77% and 82% RH. Monomodal distribution accounted for 90% for 30 nm particles, 17% for 50 nm particles, and less than 7% for particles larger than 50 nm at 82% RH. Deconvolution of the bimodal distribution indicated a less hygroscopic group and a more hygroscopic group, with the fraction of the more hygroscopic group increasing with the initial dry particle size and then remaining almost constant for accumulation mode particles. Our results imply that submicron particles in urban Hangzhou were almost entirely externally mixed, and the hygroscopic properties of ambient particles in urban Hangzhou were mainly a function of their size and chemical composition.

Keywords

hygroscopicity / hygroscopic tandem differential mobility analyzer (H-TDMA) / submicron ambient particles / Hangzhou

Cite this article

Download citation ▾
Jiachen ZHANG, Lin WANG, Jianmin CHEN, Shengmao FENG, Jiandong SHEN, Li JIAO. Hygroscopicity of ambient submicron particles in urban Hangzhou, China. Front. Environ. Sci. Eng., 2011, 5(3): 342-347 DOI:10.1007/s11783-011-0358-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang L. Intercontinental transport of air pollution. Frontiers of Environmental Science & Engineering in China, 2010, 4(1): 20–29

[2]

Tursic J, Berner A, Podkrajsek B, Grgic I. Influence of ammonia on sulfate formation under haze conditions. Atmospheric Environment, 2004, 38(18): 2789–2795

[3]

Zieger P, Fierz-Schmidhauser R, Gysel M, Ström J, Henne S, Yttri K E, Baltensperger U, Weingartner E. Effects of relative humidity on aerosol light scattering in the Arctic. Atmospheric Chemistry and Physics, 2010, 10(8): 3875–3890

[4]

Petters M D, Kreidenweis S M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 2007, 7(8): 1961–1971

[5]

Liu B Y H, Pui D, Whitby K, Kittelson D, Kousaka Y, McKenzie R. Aerosol mobility chromatograph–new detector for sulfuric-acid aerosols. Atmospheric Environment, 1978, 12(1–3): 99–104

[6]

Swietlicki E, Hansson H C, Hameri K, Svenningsson B, Massling A, McFiggans G, McMurry P H, Petaja T, Tunved P, Gysel M, Topping D, Weingartner E, Baltensperger U, Rissler J, Wiedensohler A, Kulmala M. Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments–a review. Tellus. Series B, Chemical and Physical Meteorology, 2008, 60(3): 432–469

[7]

Massling A, Stock M, Wehner B, Wu Z J, Hu M, Brüggemann E, Gnauk T, Herrmann H, Wiedensohler A. Size segregated water uptake of the urban submicrometer aerosol in Beijing. Atmospheric Environment, 2009, 43(8): 1578–1589

[8]

Meier J, Wehner B, Massling A, Birmili W, Nowak A, Gnauk T, Brüggemann E, Herrmann H, Min H, Wiedensohler A. Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: a comparison of three experimental methods. Atmospheric Chemistry and Physics, 2009, 9(18): 6865–6880

[9]

Eichler H, Cheng Y F, Birmili W, Nowak A, Wiedensohler A, Brüggemann E, Gnauk T, Herrmann H, Althausen D, Ansmann A. Hygroscopic properties and extinction of aerosol particles at ambient relative humidity in south-eastern China. Atmospheric Environment, 2008, 42(25): 6321–6334

[10]

Ye X N, Ma Z, Hu D W, Yang X, Chen J M. Size-resolved hygroscopicity of submicrometer urban aerosols in Shanghai during wintertime. Atmospheric Research, 2011, 99(2): 353–364

[11]

Fu Q Y, Zhuang G, Wang J, Xu C, Huang K, Li J, Hou B, Lu T, Streets D G. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment, 2008, 42(9): 2023–2036

[12]

Liu X G, Cheng Y, Zhang Y, Jung J, Sugimoto N, Chang S Y, Kim Y J, Fan S, Zeng L. Influences of relative humidity and particle chemical composition on aerosol scattering properties during the 2006 PRD campaign. Atmospheric Environment, 2008, 42(7): 1525–1536

[13]

Ye X N, Chen T Y, Hu D W, Yang X, Chen J M, Zhang R Y, Khakuziv A F, Wang L. A multifunctional HTDMA system with a robust temperature control. Advances in Atmospheric Sciences, 2009, 26(6): 1235–1240

[14]

Gysel M, McFiggans G B, Coe H. Inversion of tandem differential mobility analyser (TDMA) measurements. Journal of Aerosol Science, 2009, 40(2): 134–151

[15]

Cao J J, Shen Z, Chow J C, Qi G, Watson J G. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology, 2009, 7(3): 161–168

[16]

Wexler A S, Seinfeld J H. Second-generation inorganic aerosol model. Atmospheric Environment. Part A, General Topics, 1991, 25(12): 2731–2748

[17]

Gao J, Wang T, Zhou X, Wu W, Wang W X. Measurement of aerosol number size distributions in the Yangtze River Delta in China: formation and growth of particles under polluted conditions. Atmospheric Environment, 2009, 43(4): 829–836

[18]

Asmi E, Frey A, Virkkula A, Ehn M, Manninen H E, Timonen H, Tolonen-Kivimäki O, Aurela M, Hillamo R, Kulmala M. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation. Atmospheric Chemistry and Physics, 2010, 10(9): 4253–4271

[19]

Khalizov A F, Zhang R Y, Zhang D, Xue H X, Pagels J, McMurry P H. Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor. The Journal of Geophysical Research-Atmospheres, 2009, 114, D05208

[20]

Swietlicki E, Zhou J, Berg O H, Martinsson B G, Frank G, Cederfelt S I, Dusek U, Berner A, Birmili W, Wiedensohler A, Yuskiewicz B, Bower K N. A closure study of sub-micrometer aerosol particle hygroscopic behaviour. Atmospheric Research, 1999, 50(3–4): 205–240

[21]

Huang X F, Yu J Z, He L Y, Hu M. Size distribution characteristics of elemental carbon emitted from Chinese vehicles: results of a tunnel study and atmospheric implications. Environmental Science & Technology, 2006, 40(17): 5355–5360

[22]

Massling A, Stock M, Wiedensohler A. Diurnal, weekly, and seasonal variation of hygroscopic properties of submicrometer urban aerosol particles. Atmospheric Environment, 2005, 39(21): 3911–3922

[23]

Gasparini R, Li R J, Collins D R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol. Atmospheric Environment, 2004, 38(20): 3285–3303

[24]

Chen J P. Theory of deliquescence and modified Kohler curves. Journal of the Atmospheric Sciences, 1994, 51(23): 3505–3516

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (177KB)

3018

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/