Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism

LIU Chun1, HUANG Xia2

PDF(189 KB)
PDF(189 KB)
Front. Environ. Sci. Eng. ›› 2008, Vol. 2 ›› Issue (4) : 452-460. DOI: 10.1007/s11783-008-0050-8

Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism

  • LIU Chun1, HUANG Xia2
Author information +
History +

Abstract

Bioaugmentation with genetically engineered microorganisms (GEMs) in a membrane bioreactor (MBR) for enhanced removal of recalcitrant pollutants was explored. An atrazine-degrading genetically engineered microorganism (GEM) with green fluorescent protein was inoculated into an MBR and the effects of such a bioaugmentation strategy on atrazine removal were investigated. The results show that atrazine removal was improved greatly in the bioaugmented MBR compared with a control system. After a start-up period of 6 days, average 94.7% of atrazine was removed in bioaugmented MBR when atrazine concentration of influent was 14.5 mg/L. The volumetric removal rates increased linearly followed by atrazine loading increase and the maximum was 65.5 mg/(L·d). No negative effects were found on COD removal although carbon oxidation activity of bioaugmented sludge was lower than that of common sludge. After inoculation, adsorption to sludge flocs was favorable for GEM survival. The GEM population size initially decreased shortly and then was kept constant at about 104–105 CFU/mL. Predation of micro-organisms played an important role in the decay of the GEM population. GEM leakage from MBR was less than 102 CFU/mL initially and was then undetectable. In contrast, in a conventionally activated sludge bioreactor (CAS), sludge bulking occurred possibly due to atrazine exposure, resulting in bioaugmentation failure and serious GEM leakage. So MBR was superior to CAS in atrazine bioaugmentation treatment using GEM.

Cite this article

Download citation ▾
LIU Chun, HUANG Xia. Enhanced atrazine removal using membrane bioreactor bioaugmented with genetically engineered microorganism. Front.Environ.Sci.Eng., 2008, 2(4): 452‒460 https://doi.org/10.1007/s11783-008-0050-8

References

1. van Limbergen H, Top E M, Verstraete W . Bioaugmentation in activated sludge: Current featuresand future perspectives. Appl MicrobiolBiotechnol, 1998, 50: 16–23. doi:10.1007/s002530051250
2. Mcclure N C, Weightman J, Fry J C . Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated sludgeunit. Appl Environ Microbiol, 1989, 55: 2627–2634
3. Fujita M, Ike M, Hashimoto S . Feasibility of wastewater treatment using geneticallyengineered microorganisms. Water Res, 1991, 25: 979–984. doi:10.1016/0043-1354(91)90147-I
4. Nublein K, Maris D, Timmis K N, Dwyer D F . Expressionand transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activatedsludge microcosms. Appl Environ Microbiol, 1992, 58: 3380–3386
5. Fujita M, Ike M, Kamiya T . Accelerated phenol removal by amplifying the gene expressionwith a recombinant plasmid encoding catechol-2, 3-oxygenase. Water Res, 1993, 27: 9–13. doi:10.1016/0043-1354(93)90189-O
6. Fujita M, Ike M, Uesugi K . Operation parameters affecting the survival of geneticallyengineered microorganisms in activated sludge processes. Water Res, 1994, 28: 1667–1672. doi:10.1016/0043-1354(94)90235-6
7. Bryers J D, Sharp R R . Retention and expressionof recombinant plasmids in suspended and biofilm bound bacteria degradingtrichloroethene (TCE). Water Sci Technol, 1997, 36: 1–8. doi:10.1016/S0273-1223(97)00636-7
8. Erb R W, Eichner C A, Wagner D I, Timmis K N . Bioprotectionof microbial communities from toxic phenol mixtures by a geneticallydesigned Pseudomonas. Nature Biotechnol, 1997, 15: 378–382. doi:10.1038/nbt0497-378
9. Soda S, Ike M, Fujita M . Effects of inoculation of a genetically engineered bacteriumon performance and indigenous bacteria of a sequencing batch activatedsludge process treating phenol. J FermentBioeng, 1998, 86: 90–96. doi:10.1016/S0922-338X(98)80040-8
10. Ravatn R, Zehnder A J B, van der Meer J R . Low-frequency horizontal transfer of an element containingthe chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scaleactivated-sludge microcosms. Appl EnvironMicrobiol, 1998, 64: 2162–2132
11. Boon N, Top E M, Verstraete W, Siciliao S D . Bioaugmentation as a tool to protect the structure and function ofan activated sludge microbial community against a 3-chloroanilineshock load. Appl Environ Microbiol, 2003, 69: 1511–1520. doi:10.1128/AEM.69.3.1511-1520.2003
12. Gentry T J, Rensing C, Pepper I L . New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol, 2004, 34: 447–494. doi:10.1080/10643380490452362
13. Top E M, Springael D, Boon N . Catabolic mobile genetic elements and their potentialuse in bioaugmentation of polluted soil and water. FEMS Microbiol Ecol, 2002, 42: 199–208. doi:10.1111/j.1574-6941.2002.tb01009.x
14. Ghyoot W, Springael D, Dong Q . Bioaugmentation with the clc-element carrying Pseudomonas putida BN210 in a membrane separationbioreactor. Water Sci Technol, 2000, 41: 279–286
15. Springael D, Peys K, Ryngaert A . Community shifts in a seeded 3-chlorobenzoate degradingmembrane biofilm reactor: Indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminantbacteria. Environ Microbiol, 2002, 4: 70–80. doi:10.1046/j.1462-2920.2002.00267.x
16. Steinberg C E W, Lorenz R, Spieser O H . Effects of atrazine on swimming behavior of zebrafish, Brachydanio rerio. Water Res, 1995, 29: 981–985. doi:10.1016/0043-1354(94)00217-U
17. Cerejeira M J, Viana P, Batista S, Pereira T, Silva E, Valério M J, Ferreira M . Pesticidesin Portuguese surface and ground waters. Water Res, 2003, 37: 1055–1063. doi:10.1016/S0043-1354(01)00462-6
18. Rebich R A, Coupe R H, Thurman E M . Herbicide concentrations in the Mississippi River Basin:The importance of chloroacetanilide herbicide degradates. Sci Total Environ, 2004, 321: 189–199. doi:10.1016/j.scitotenv.2003.09.006
19. Sánchez-Camazano M, Lorenzo L F, Sánchez-Martín M J . Atrazine and alachlor inputsto surface and ground waters in irrigated corn cultivation areas ofCastilla-Leon region, Spain. Environ MonitAssess, 2005, 105: 11–24. doi:10.1007/s10661-005-2814-y
20. Guzzella L, Pozzoni F, Giuliano G . Herbicide contamination of surficial groundwater in NorthernItaly. Environ Pollut, 2006, 142: 344–353. doi:10.1016/j.envpol.2005.10.037
21. Graymore M, Stagnitti F, Allinson G . Impacts of atrazine in aquatic ecosystems. Environ Int, 2001, 26: 483–495. doi:10.1016/S0160-4120(01)00031-9
22. Ren J, Jiang K . Impact of atrazine disposalon the water resources of the Yang River in Zhangjiakou area in China. B Environ Contam Tox, 2002, 68: 893–900. doi:10.1007/s00128-002-0038-1
23. Wackett L P, Sadowsky M J, Martinez B, Shapir N . Biodegradationof atrazine and related s-triazinecompounds: From enzymes to field studies. Appl Microbiol Biotechnol, 2002, 58: 39–45. doi:10.1007/s00253-001-0862-y
24. De Souza M L, Wackett L P . Cloning, characterization,and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine.Appl Environ Microbiol, 1995, 61: 3373–3378
25. Sambrook J, Maniatis T, Fritsch E F . Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor LaboratoryPress, 1989
26. Huang X, Liu R, Qian Y . Behavior of soluble microbial products in a membranebioreactor. Process Biochem, 2000, 36: 401–406. doi:10.1016/S0032-9592(00)00206-5
27. State EnvironmentalProtection Administration of China. . Standard Methods for theExamination of Water and Wastewater. 4th ed. Beijing: State Environmental ProtectionAdministration of China, 2002 (in Chinese)
28. Inamori Y, Murakami K, Sudo R, Kurihara Y . Interactionbetween GEMs and indigenous microorganisms in aquatic ecosystem. Water Sci Technol, 1996, 34: 397–405. doi:10.1016/S0273-1223(96)00771-8
29. Bryers J D, Sharp R R . Retention and expressionof recombinant plasmids in suspended and biofilm bound bacteria degradingtrichloroethene (TCE). Water Sci Technol, 1997, 36: 1–8. doi:10.1016/S0273-1223(97)00636-7
30. Bouchez T, Patureau D, Dabert P, Wagner M, Delgeres J P, Moletta R . Successfuland unsuccessful bioaugmentation experiments monitored by fluorescent in situ hybridization. Water Sci Technol, 2000, 41: 61–68
31. Bott T L, Kaplan L A . Autecological propertiesof 3-chlorobenzoate-degrading bacteria and their population dynamicswhen introduced into sediments. MicrobialEcol, 2002, 43: 199–216. doi:10.1007/s00248-001-1034-4
32. Protzman R S, Lee P H, Ong S K, Moorman T B . Treatment of formulated atrazine rinsate by Agrobacterium radiobacter strain J14a in a sequencingbatch biofilm reactor. Water Res, 1999, 33: 1399–1404. doi:10.1016/S0043-1354(98)00358-3
33. Kontchou C Y, Gschwind N . Biodegradation of s-triazine compounds by a stable mixed bacterialcommunity. Ecotox Environ Safe, 1999, 43: 47–56. doi:10.1006/eesa.1998.1756
34. Ghosh W R, Philip L . trazine degradation in anaerobicenvironment by a mixed microbial consortium. Water Res, 2004, 34: 2277–2284. doi:10.1016/j.watres.2003.10.059
35. Murakami K, Inamori Y, Sudo R, Kurihara Y . Effectof temperature on prosperity and decay of genetically engineered microorganismsin a microcosm system. Water Sci Technol, 1992, 26: 2165–2168
36. Nsabinmana E, Bohatier J, Belan A, Pepirr D, Charles L . Effects of the herbicide atrazine onthe activated sludge process: Microbiology and functional views. Chmosphere, 1996, 33: 479–494. doi:10.1016/0045-6535(96)00182-8
AI Summary AI Mindmap
PDF(189 KB)

Accesses

Citations

Detail

Sections
Recommended

/