RESEARCH ARTICLE

Reduction of the wind erosion potential in dried-up lakebeds using artificial biocrusts

  • Hossein KHEIRFAM , 1,2 ,
  • Maryam ROOHI 3
Expand
  • 1. Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia 5756151818, Iran
  • 2. Department of Environmental Sciences, Urmia Lake Research Institute, Urmia University, Urmia 5756151818, Iran
  • 3. Microbiology Laboratory Expert, Artemia & Aquaculture Research Institute, Urmia University, Urmia 5756151818, Iran

Received date: 22 Feb 2021

Accepted date: 09 Sep 2021

Copyright

2022 Higher Education Press

Abstract

The artificial creation of biocrusts can be a rapid and pervasive solution to reduce wind erosion potential (WEP) in dried-up lakes (e.g., Lake Urmia). So, in this study, we created a biocrust by the inoculation of bacteria and cyanobacteria on trays filled by soils collected from the dried-up bed of Lake Urmia, Iran, to reduce WEP in laboratory conditions. We used the wind erodible fraction of soil (EF) and soil crust factor (SCF) equations to calculate the WEP of the treated soils. EF and SCF were decreased (p < 0.05) through applying the co-inoculation of bacteria and cyanobacteria by 5.6% and 10.57%, respectively, as compared to the control; also, the “cyanobacteria alone” inoculation decreased EF by 3.9%. Our results showed that the artificial biocrusts created by soil inoculation, especially with the co-using of bacteria and cyanobacteria, significantly reduced the WEP of a newly dried-up lakebed. Furthermore, we found that inoculation decreased the WEP of the study soil by increasing the soil organic matter content from 3.7 to 5 fold. According to scanning electron microscopy images, the inoculated microorganisms, especially cyanobacteria, improved soil aggregation by their exopolysaccharides and filaments; thus, they can be used with other factors to estimate the soil erodibility in well-developed biocrusts. The inoculation technique could be considered as a rapid strategy in stabilizing lakebeds against wind force. However, it should be confirmed after additional experiments using wind tunnels under natural conditions.

Cite this article

Hossein KHEIRFAM , Maryam ROOHI . Reduction of the wind erosion potential in dried-up lakebeds using artificial biocrusts[J]. Frontiers of Earth Science, 2022 , 16(4) : 865 -875 . DOI: 10.1007/s11707-021-0951-4

Acknowledgments

This research was supported by the Urmia Lake Research Institute, Urmia University, Iran (No. 98/A/001), whose valuable assistance is greatly appreciated.
1
Ahmady-BirganiH, AgahiE, AhmadiS J, ErfanianM. ( 2018). Sediment source fingerprinting of the Lake Urmia sand dunes. Sci Rep, 8( 1): 206

DOI

2
AnsariS, FatmaT. ( 2016). Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization and characterization. PLoS One, 11( 6): e0158168

DOI

3
AvecillaF, PanebiancoJ E, BuschiazzoD E. ( 2015). Variable effects of saltation and soil properties on wind erosion of different textured soils. Aeolian Res, 18: 145– 153

DOI

4
BelnapJ, WalkerB J, MunsonS M, GillR A. ( 2014). Controls on sediment production in two US deserts. Aeolian Res, 14: 15– 24

DOI

5
BelnapJ, WilcoxB P, Van ScoyocM W, PhillipsS L. ( 2013). Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition. Ecohydrology, 6( 3): 474– 482

DOI

6
BorrelliP, BallabioC, PanagosP, MontanarellaL. ( 2014). Wind erosion susceptibility of European soils. Geoderma, 232-234: 471– 478

DOI

7
BorrelliP, PanagosP, BallabioC, LugatoE, WeynantsM, MontanarellaL. ( 2016). Towards a pan—European assessment of land susceptibility to wind erosion. Land Degrad Dev, 27( 4): 1093– 1105

DOI

8
BullardJ E, OckelfordA, StrongC L, AubaultH. ( 2018). Impact of multi-day rainfall events on surface roughness and physical crusting of very fine soils. Geoderma, 313: 181– 192

DOI

9
ChamizoS, MugnaiG, RossiF, CertiniG, De PhilippisR. ( 2018). Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci, 6: 49

DOI

10
ChepilW S. ( 1950). Properties of soil which influence wind erosion: I. the governing principle of surface roughness. Soil Sci, 69( 2): 149– 162

11
ChepilW S, WoodruffN P. ( 1954). Estimations of wind erodibility of field surfaces. J Soil Water Conserv, 9: 257– 265

12
ColazoJ C, BuschiazzoD E. ( 2010). Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159( 1−2): 228– 236

DOI

13
CostaO Y A, RaaijmakersJ M, KuramaeE E. ( 2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol, 9: 1636

DOI

14
CutlerN A, BelyeaL R, DugmoreA J. ( 2008). The spatiotemporal dynamics of a primary succession. J Ecol, 96( 2): 231– 246

DOI

15
Danesh-YazdiM, Ataie-AshtianiB. ( 2019). Lake Urmia crisis and restoration plan: planning without appropriate data and model is gambling. J Hydrol (Amst), 576: 639– 651

DOI

16
de OroL A, ColazoJ C, AvecillaF, BuschiazzoD E, AsensioC. ( 2019). Relative soil water content as a factor for wind erodibility in soils with different texture and aggregation. Aeolian Res, 37: 25– 31

DOI

17
DuniwayM C, PfennigwerthA A, FickS E, NaumanT W, BelnapJ, BargerN N. ( 2019). Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere, 10( 3): e02650

DOI

18
FarebrotherW, HesseP P, ChangH C, JonesC. ( 2017). Dry lake beds as sources of dust in Australia during the Late Quaternary: a volumetric approach based on lake bed and deflated dune volumes. Quat Sci Rev, 161: 81– 98

DOI

19
FanB, ZhouY, MaQ, YuQ, ZhaoC, SunK. ( 2018). The bet-hedging strategies for seedling emergence of Calligonum mongolicum to adapt to the extreme desert environments in northwestern China. Front Plant Sci, 9: 1167

DOI

20
FryrearD W, BilbroJ D, SalehA, SchombergH, StoutJ E, ZobeckT M. ( 2000). RWEQ: improved wind erosion technology. J Soil Water Conserv, 55( 2): 183– 189

21
FryrearD W, KrammesC A, WilliamsonD L, ZobeckT M. ( 1994). Computing the wind erodible fraction of soils. J Soil Water Conserv, 49( 2): 183– 188

22
GaoL, BowkerM A, XuM, SunH, TuoD, ZhaoY. ( 2017). Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biol Biochem, 105: 49– 58

DOI

23
GarbevaP, TycO, Remus-EmsermannM N P, van der WalA, VosM, SilbyM, de BoerW. ( 2011). No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1. PLoS One, 6( 11): e27266

DOI

24
GilletteD A, AdamsJ, EndoA, SmithD, KihlR. ( 1980). Threshold velocities for input of soil particles into the air by desert soils. J Geophys Res Oceans, 85( C10): 5621– 5630

DOI

25
JanssenP H, YatesP S, GrintonB E, TaylorP M, SaitM. ( 2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol, 68( 5): 2391– 2396

DOI

26
JiangC, ZhangH, ZhangZ, WangD. ( 2019). Model-based assessment soil loss by wind and water erosion in China’s Loess Plateau: dynamic change, conservation effectiveness, and strategies for sustainable restoration. Global Planet Change, 172: 396– 413

DOI

27
KheirfamH. ( 2020). Increasing soil potential for carbon sequestration using microbes from biological soil crusts. J Arid Environ, 172: 104022

DOI

28
KheirfamH RoohiM ( 2020). Accelerating the formation of biological soil crusts in the newly dried-up lakebeds using the inoculation-based technique. Sci. Total Environ, 706: 136036

29
KheirfamH, SadeghiS H R, HomaeeM, Zarei DarkiB. ( 2017a). Quality improvement of an erosion-prone soil through microbial enrichment. Soil Tillage Res, 165: 230– 238

DOI

30
KheirfamH, SadeghiS H R, Zarei DarkiB, HomaeeM. ( 2017b). Controlling rainfall-induced soil loss from small experimental plots through inoculation of bacteria and cyanobacteria. Catena, 152: 40– 46

DOI

31
Le BissonnaisY. ( 2016). Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology. Eur J Soil Sci, 67( 1): 11– 21

DOI

32
LoeppertR H SuarezD L ( 1996) Carbonate and gypsum. In: Bigham JM, editor. Methods of soil analysis, part 3—chemical methods. Madiscon: American Society of Agronomy, 437− 474

33
LópezM V, deDios Herrero J M, HeviaG G, GraciaR, BuschiazzoD E. ( 2007). Determination of the wind-erodible fraction of soils using different methodologies. Geoderma, 139( 3−4): 407– 411

DOI

34
MahlmannD M, JahnkeJ, LoosenP. ( 2008). Rapid determination of the dry weight of single, living cyanobacterial cells using the Mach-Zehnder double-beam interference microscope. Eur J Phycol, 43( 4): 355– 364

DOI

35
MagerD M, ThomasA D. ( 2011). Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ, 75( 2): 91– 97

DOI

36
MalekiM, EbrahimiS, AsadzadehF, Emami TabriziM. ( 2016). Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. Int J Environ Sci Technol, 13( 3): 937– 944

DOI

37
MugnaiG, RossiF, FeldeVincent J M N L, ColesieC, BüdelB, PethS, KaplanA, DePhilippis R. ( 2018). The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil Biol Biochem, 127: 318– 328

DOI

38
Muñoz-RojasM, RománJ R, Roncero-RamosB, EricksonT E, MerrittD J, Aguila-CarricondoP, CantónY. ( 2018). Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Sci Total Environ, 636: 1149– 1154

DOI

39
NaikS N, GoudV V, RoutP K, DalaiA K. ( 2010). Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev, 14( 2): 578– 597

DOI

40
PásztorL, NégyesiG, LaborcziA, KovácsT, LászlóE, BihariZ. ( 2016). Integrated spatial assessment of wind erosion risk in Hungary. Nat Hazards Earth Syst Sci, 16( 11): 2421– 2432

DOI

41
Roncero-RamosB, RománJ R, Gómez-SerranoC, CantónY, AciénF G. ( 2019). Production of a biocrust-cyanobacteria strain (Nostoc commune) for large-scale restoration of dryland soils. J Appl Phycol, 31( 4): 2217– 2230

DOI

42
RossiF, De PhilippisR. ( 2015). Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life (Basel), 5( 2): 1218– 1238

DOI

43
RossiF, OlguínE J, DielsL, DePhilippis R. ( 2015). Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. N Biotechnol, 32( 1): 109– 120

DOI

44
RozensteinO, ZaadyE, KatraI, KarnieliA, AdamowskiJ, YizhaqH. ( 2014). The effect of sand grain size on the development of cyanobacterial biocrusts. Aeolian Res, 15: 217– 226

DOI

45
SadeghiS H R, KheirfamH, HomaeeM, Zarei DarkiB, VafakhahM. ( 2017). Improving runoff behavior resulting from direct inoculation of soil micro-organisms. Soil Tillage Res, 171: 35– 41

DOI

46
SequeiraC H, AlleyM M. ( 2011). Soil organic matter fractions as indices of soil quality changes. Soil Sci Soc Am J, 75( 5): 1766– 1773

DOI

47
ShahabinejadN, MahmoodabadiM, JalalianA, ChavoshiE. ( 2019). The fractionation of soil aggregates associated with primary particles influencing wind erosion rates in arid to semiarid environments. Geoderma, 356: 113936

DOI

48
StuartR K, MayaliX, LeeJ Z, Craig EverroadR, HwangM, BeboutB M, WeberP K, Pett-RidgeJ, ThelenM P. ( 2016). Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J, 10( 5): 1240– 1251

DOI

49
VacekZ, ŘeháčekD, CukorJ, VacekS, KhelT, SharmaR P, KučeraJ, KrálJ, PapajV. ( 2018). Windbreak efficiency in agricultural landscape of the central Europe: Multiple approaches to wind erosion control. Environ Manage, 62( 5): 942– 954

DOI

50
WalkleyA, BlackI A. ( 1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci, 37( 1): 29– 38

DOI

51
WangW B, LiuY D, LiD H, HuC X, RaoB Q. ( 2009). Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem, 41( 5): 926– 929

DOI

52
WhitneyJ W, BreitG N, BuckinghamS E, ReynoldsR L, BogleR C, LuoL, GoldsteinH L, VogelJ M. ( 2015). Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert. Geomorphology, 230: 13– 25

DOI

53
WhittonB A PottsM ( 2012). Introduction to the cyanobacteria. In: Whitton B A, ed. Ecology of Cyanobacteria II. Berlin: Springer, 1− 13

54
PagliaiM StoopsG ( 2010). Physical and biological surface crusts and seals. In: Stoops G, Marcelino V, Mees F, eds. Interpretation of Micromorphological Features of Soils and Regoliths. New York: Elsevier, 419− 440

55
YanY, WangX, GuoZ, ChenJ, XinX, XuD, YanR, ChenB, XuL. ( 2018). Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China. Catena, 170: 159– 168

DOI

56
ZeinoddiniM, TofighiM A, VafaeeF. ( 2009). Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran. J Great Lakes Res, 35( 1): 13– 22

DOI

57
ZouX, LiJ, ChengH, WangJ, ZhangC, KangL, LiuW, ZhangF. ( 2018). Spatial variation of topsoil features in soil wind erosion areas of northern China. Catena, 167: 429– 439

DOI

Outlines

/