Reduction of the wind erosion potential in dried-up lakebeds using artificial biocrusts
Received date: 22 Feb 2021
Accepted date: 09 Sep 2021
Copyright
The artificial creation of biocrusts can be a rapid and pervasive solution to reduce wind erosion potential (WEP) in dried-up lakes (e.g., Lake Urmia). So, in this study, we created a biocrust by the inoculation of bacteria and cyanobacteria on trays filled by soils collected from the dried-up bed of Lake Urmia, Iran, to reduce WEP in laboratory conditions. We used the wind erodible fraction of soil (EF) and soil crust factor (SCF) equations to calculate the WEP of the treated soils. EF and SCF were decreased (p < 0.05) through applying the co-inoculation of bacteria and cyanobacteria by 5.6% and 10.57%, respectively, as compared to the control; also, the “cyanobacteria alone” inoculation decreased EF by 3.9%. Our results showed that the artificial biocrusts created by soil inoculation, especially with the co-using of bacteria and cyanobacteria, significantly reduced the WEP of a newly dried-up lakebed. Furthermore, we found that inoculation decreased the WEP of the study soil by increasing the soil organic matter content from 3.7 to 5 fold. According to scanning electron microscopy images, the inoculated microorganisms, especially cyanobacteria, improved soil aggregation by their exopolysaccharides and filaments; thus, they can be used with other factors to estimate the soil erodibility in well-developed biocrusts. The inoculation technique could be considered as a rapid strategy in stabilizing lakebeds against wind force. However, it should be confirmed after additional experiments using wind tunnels under natural conditions.
Hossein KHEIRFAM , Maryam ROOHI . Reduction of the wind erosion potential in dried-up lakebeds using artificial biocrusts[J]. Frontiers of Earth Science, 2022 , 16(4) : 865 -875 . DOI: 10.1007/s11707-021-0951-4
1 |
Ahmady-BirganiH, AgahiE, AhmadiS J, ErfanianM. ( 2018). Sediment source fingerprinting of the Lake Urmia sand dunes. Sci Rep, 8( 1): 206
|
2 |
AnsariS, FatmaT. ( 2016). Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization and characterization. PLoS One, 11( 6): e0158168
|
3 |
AvecillaF, PanebiancoJ E, BuschiazzoD E. ( 2015). Variable effects of saltation and soil properties on wind erosion of different textured soils. Aeolian Res, 18: 145– 153
|
4 |
BelnapJ, WalkerB J, MunsonS M, GillR A. ( 2014). Controls on sediment production in two US deserts. Aeolian Res, 14: 15– 24
|
5 |
BelnapJ, WilcoxB P, Van ScoyocM W, PhillipsS L. ( 2013). Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition. Ecohydrology, 6( 3): 474– 482
|
6 |
BorrelliP, BallabioC, PanagosP, MontanarellaL. ( 2014). Wind erosion susceptibility of European soils. Geoderma, 232-234: 471– 478
|
7 |
BorrelliP, PanagosP, BallabioC, LugatoE, WeynantsM, MontanarellaL. ( 2016). Towards a pan—European assessment of land susceptibility to wind erosion. Land Degrad Dev, 27( 4): 1093– 1105
|
8 |
BullardJ E, OckelfordA, StrongC L, AubaultH. ( 2018). Impact of multi-day rainfall events on surface roughness and physical crusting of very fine soils. Geoderma, 313: 181– 192
|
9 |
ChamizoS, MugnaiG, RossiF, CertiniG, De PhilippisR. ( 2018). Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci, 6: 49
|
10 |
ChepilW S. ( 1950). Properties of soil which influence wind erosion: I. the governing principle of surface roughness. Soil Sci, 69( 2): 149– 162
|
11 |
ChepilW S, WoodruffN P. ( 1954). Estimations of wind erodibility of field surfaces. J Soil Water Conserv, 9: 257– 265
|
12 |
ColazoJ C, BuschiazzoD E. ( 2010). Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159( 1−2): 228– 236
|
13 |
CostaO Y A, RaaijmakersJ M, KuramaeE E. ( 2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol, 9: 1636
|
14 |
CutlerN A, BelyeaL R, DugmoreA J. ( 2008). The spatiotemporal dynamics of a primary succession. J Ecol, 96( 2): 231– 246
|
15 |
Danesh-YazdiM, Ataie-AshtianiB. ( 2019). Lake Urmia crisis and restoration plan: planning without appropriate data and model is gambling. J Hydrol (Amst), 576: 639– 651
|
16 |
de OroL A, ColazoJ C, AvecillaF, BuschiazzoD E, AsensioC. ( 2019). Relative soil water content as a factor for wind erodibility in soils with different texture and aggregation. Aeolian Res, 37: 25– 31
|
17 |
DuniwayM C, PfennigwerthA A, FickS E, NaumanT W, BelnapJ, BargerN N. ( 2019). Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere, 10( 3): e02650
|
18 |
FarebrotherW, HesseP P, ChangH C, JonesC. ( 2017). Dry lake beds as sources of dust in Australia during the Late Quaternary: a volumetric approach based on lake bed and deflated dune volumes. Quat Sci Rev, 161: 81– 98
|
19 |
FanB, ZhouY, MaQ, YuQ, ZhaoC, SunK. ( 2018). The bet-hedging strategies for seedling emergence of Calligonum mongolicum to adapt to the extreme desert environments in northwestern China. Front Plant Sci, 9: 1167
|
20 |
FryrearD W, BilbroJ D, SalehA, SchombergH, StoutJ E, ZobeckT M. ( 2000). RWEQ: improved wind erosion technology. J Soil Water Conserv, 55( 2): 183– 189
|
21 |
FryrearD W, KrammesC A, WilliamsonD L, ZobeckT M. ( 1994). Computing the wind erodible fraction of soils. J Soil Water Conserv, 49( 2): 183– 188
|
22 |
GaoL, BowkerM A, XuM, SunH, TuoD, ZhaoY. ( 2017). Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biol Biochem, 105: 49– 58
|
23 |
GarbevaP, TycO, Remus-EmsermannM N P, van der WalA, VosM, SilbyM, de BoerW. ( 2011). No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1. PLoS One, 6( 11): e27266
|
24 |
GilletteD A, AdamsJ, EndoA, SmithD, KihlR. ( 1980). Threshold velocities for input of soil particles into the air by desert soils. J Geophys Res Oceans, 85( C10): 5621– 5630
|
25 |
JanssenP H, YatesP S, GrintonB E, TaylorP M, SaitM. ( 2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol, 68( 5): 2391– 2396
|
26 |
JiangC, ZhangH, ZhangZ, WangD. ( 2019). Model-based assessment soil loss by wind and water erosion in China’s Loess Plateau: dynamic change, conservation effectiveness, and strategies for sustainable restoration. Global Planet Change, 172: 396– 413
|
27 |
KheirfamH. ( 2020). Increasing soil potential for carbon sequestration using microbes from biological soil crusts. J Arid Environ, 172: 104022
|
28 |
KheirfamH RoohiM ( 2020). Accelerating the formation of biological soil crusts in the newly dried-up lakebeds using the inoculation-based technique. Sci. Total Environ, 706: 136036
|
29 |
KheirfamH, SadeghiS H R, HomaeeM, Zarei DarkiB. ( 2017a). Quality improvement of an erosion-prone soil through microbial enrichment. Soil Tillage Res, 165: 230– 238
|
30 |
KheirfamH, SadeghiS H R, Zarei DarkiB, HomaeeM. ( 2017b). Controlling rainfall-induced soil loss from small experimental plots through inoculation of bacteria and cyanobacteria. Catena, 152: 40– 46
|
31 |
Le BissonnaisY. ( 2016). Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology. Eur J Soil Sci, 67( 1): 11– 21
|
32 |
LoeppertR H SuarezD L ( 1996) Carbonate and gypsum. In: Bigham JM, editor. Methods of soil analysis, part 3—chemical methods. Madiscon: American Society of Agronomy, 437− 474
|
33 |
LópezM V, deDios Herrero J M, HeviaG G, GraciaR, BuschiazzoD E. ( 2007). Determination of the wind-erodible fraction of soils using different methodologies. Geoderma, 139( 3−4): 407– 411
|
34 |
MahlmannD M, JahnkeJ, LoosenP. ( 2008). Rapid determination of the dry weight of single, living cyanobacterial cells using the Mach-Zehnder double-beam interference microscope. Eur J Phycol, 43( 4): 355– 364
|
35 |
MagerD M, ThomasA D. ( 2011). Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ, 75( 2): 91– 97
|
36 |
MalekiM, EbrahimiS, AsadzadehF, Emami TabriziM. ( 2016). Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. Int J Environ Sci Technol, 13( 3): 937– 944
|
37 |
MugnaiG, RossiF, FeldeVincent J M N L, ColesieC, BüdelB, PethS, KaplanA, DePhilippis R. ( 2018). The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil Biol Biochem, 127: 318– 328
|
38 |
Muñoz-RojasM, RománJ R, Roncero-RamosB, EricksonT E, MerrittD J, Aguila-CarricondoP, CantónY. ( 2018). Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Sci Total Environ, 636: 1149– 1154
|
39 |
NaikS N, GoudV V, RoutP K, DalaiA K. ( 2010). Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev, 14( 2): 578– 597
|
40 |
PásztorL, NégyesiG, LaborcziA, KovácsT, LászlóE, BihariZ. ( 2016). Integrated spatial assessment of wind erosion risk in Hungary. Nat Hazards Earth Syst Sci, 16( 11): 2421– 2432
|
41 |
Roncero-RamosB, RománJ R, Gómez-SerranoC, CantónY, AciénF G. ( 2019). Production of a biocrust-cyanobacteria strain (Nostoc commune) for large-scale restoration of dryland soils. J Appl Phycol, 31( 4): 2217– 2230
|
42 |
RossiF, De PhilippisR. ( 2015). Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life (Basel), 5( 2): 1218– 1238
|
43 |
RossiF, OlguínE J, DielsL, DePhilippis R. ( 2015). Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. N Biotechnol, 32( 1): 109– 120
|
44 |
RozensteinO, ZaadyE, KatraI, KarnieliA, AdamowskiJ, YizhaqH. ( 2014). The effect of sand grain size on the development of cyanobacterial biocrusts. Aeolian Res, 15: 217– 226
|
45 |
SadeghiS H R, KheirfamH, HomaeeM, Zarei DarkiB, VafakhahM. ( 2017). Improving runoff behavior resulting from direct inoculation of soil micro-organisms. Soil Tillage Res, 171: 35– 41
|
46 |
SequeiraC H, AlleyM M. ( 2011). Soil organic matter fractions as indices of soil quality changes. Soil Sci Soc Am J, 75( 5): 1766– 1773
|
47 |
ShahabinejadN, MahmoodabadiM, JalalianA, ChavoshiE. ( 2019). The fractionation of soil aggregates associated with primary particles influencing wind erosion rates in arid to semiarid environments. Geoderma, 356: 113936
|
48 |
StuartR K, MayaliX, LeeJ Z, Craig EverroadR, HwangM, BeboutB M, WeberP K, Pett-RidgeJ, ThelenM P. ( 2016). Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J, 10( 5): 1240– 1251
|
49 |
VacekZ, ŘeháčekD, CukorJ, VacekS, KhelT, SharmaR P, KučeraJ, KrálJ, PapajV. ( 2018). Windbreak efficiency in agricultural landscape of the central Europe: Multiple approaches to wind erosion control. Environ Manage, 62( 5): 942– 954
|
50 |
WalkleyA, BlackI A. ( 1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci, 37( 1): 29– 38
|
51 |
WangW B, LiuY D, LiD H, HuC X, RaoB Q. ( 2009). Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem, 41( 5): 926– 929
|
52 |
WhitneyJ W, BreitG N, BuckinghamS E, ReynoldsR L, BogleR C, LuoL, GoldsteinH L, VogelJ M. ( 2015). Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert. Geomorphology, 230: 13– 25
|
53 |
WhittonB A PottsM ( 2012). Introduction to the cyanobacteria. In: Whitton B A, ed. Ecology of Cyanobacteria II. Berlin: Springer, 1− 13
|
54 |
PagliaiM StoopsG ( 2010). Physical and biological surface crusts and seals. In: Stoops G, Marcelino V, Mees F, eds. Interpretation of Micromorphological Features of Soils and Regoliths. New York: Elsevier, 419− 440
|
55 |
YanY, WangX, GuoZ, ChenJ, XinX, XuD, YanR, ChenB, XuL. ( 2018). Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China. Catena, 170: 159– 168
|
56 |
ZeinoddiniM, TofighiM A, VafaeeF. ( 2009). Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran. J Great Lakes Res, 35( 1): 13– 22
|
57 |
ZouX, LiJ, ChengH, WangJ, ZhangC, KangL, LiuW, ZhangF. ( 2018). Spatial variation of topsoil features in soil wind erosion areas of northern China. Catena, 167: 429– 439
|
/
〈 | 〉 |