Assessing the performance of solar radiation management geoengineering simulations

Michael F. Wehner

Front. Earth Sci. ››

PDF (9185KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-025-1180-z
RESEARCH ARTICLE

Assessing the performance of solar radiation management geoengineering simulations

Author information +
History +
PDF (9185KB)

Abstract

Offsetting the global warming caused by anthropogenic increases in atmospheric greenhouse gases by deliberate injection of aerosols into the stratosphere is the most studied of solar radiation management geoengineering schemes. The long-term success or failure of such schemes in achieving their stated goals is assessed by comparing simulated geoengineered temperature, precipitation and tropical cyclones metrics to equivalent fields in the simulated targeted climate simulations. Results using available data sets from three single model stabilized climate target experiments and three multi-model climate change reduction experiments are presented and compared against a measure of internal variability. While all but one experimental scheme is successful in achieving their targeted global mean annual surface temperature, their success at regional scales varies significantly and is often larger than the internal variability metric used here.

Graphical abstract

Keywords

geoengineering / solar radiation management / climate model evaluation

Cite this article

Download citation ▾
Michael F. Wehner. Assessing the performance of solar radiation management geoengineering simulations. Front. Earth Sci. DOI:10.1007/s11707-025-1180-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abiodun B J, Odoulami R C, Sawadogo W, Oloniyo O A, Abatan A A, New M, Lennard C, Izidine P, Egbebiyi T S, MacMartin D G (2021). Potential impacts of stratospheric aerosol injection on drought risk managements over major river basins in Africa.Clim Change, 169(3−4): 31

[2]

Alamou A E, Obada E, Biao E I, Zandagba E B J, Da-Allada C Y, Bonou F K, Baloïtcha E, Tilmes S, Irvine P J (2022). Impact of stratospheric aerosol geoengineering on meteorological droughts in West Africa.Atmosphere (Basel), 13(2): 234

[3]

Allen M R, Ingram W J (2002). Constraints on future changes in climate and the hydrologic cycle.Nature, 419(6903): 224–232

[4]

Banerjee A, Butler A H, Polvani L M, Robock A, Simpson I R, Sun L (2021). Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics.Atmos Chem Phys, 21(9): 6985–6997

[5]

Barnes E A, Hurrell J W, Sun L (2022). Detecting changes in global extremes under the GLENS-SAI climate intervention strategy.Geophys Res Lett, 49: e2022GL100198

[6]

Camargo S J, Emanuel K A, Sobel A H (2007). Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis.J Clim, 20(19): 4819–4834

[7]

Cha E J, Knutson T R, Lee T C, Ying M, Nakaegawa T (2020). Third assessment on impacts of climate change on tropical cyclones in the Typhoon Committee Region – Part II: future projections.Trop Cyclone Res Rev, 9(2): 75–86

[8]

Chand S S, Walsh K J E, Camargo S J, Kossin J P, Tory K J, Wehner M F, Chan J C L, Klotzbach P J, Dowdy A J, Bell S S, Ramsay H A, Murakami H (2024). Reply to: limitations of reanalyses for detecting tropical cyclone trends.Nat Clim Chang, 14(2): 146–147

[9]

Chand S S, Walsh K J E, Camargo S J, Kossin J P, Tory K J, Wehner M F, Chan J C L, Klotzbach P J, Dowdy A J, Bell S S, Ramsay H A, Murakami H (2022). Declining tropical cyclone frequency under global warming.Nat Clim Chang, 12(7): 655–661

[10]

Chao L W, Zelinka M D, Dessler A E (2024). Evaluating cloud feedback components in observations and their representation in climate models.Journal of Geophysical Research: Atmospheres, 129: e2023JD039427

[11]

Coles S (20012001. An Introduction to Statistical Modeling of Extreme Values Springer Series in Statistics. Springer

[12]

de Perez E, Fuentes I, Jack C, Kruczkiewicz A, Pinto I, Stephens E (2022). Different types of drought under climate change or geoengineering: systematic review of societal implications.Front Clim, 4: 959519

[13]

Emanuel K (1987). The dependence of hurricane intensity on climate.Nature, 326(6112): 483–485

[14]

Emanuel K (2000). A statistical analysis of tropical cyclone intensity.Mon Weather Rev, 128(4): 1139–1152

[15]

Emanuel K (2024). Limitations of reanalyses for detecting tropical cyclone trends.Nat Clim Chang, 14(2): 143–145

[16]

Emanuel K A, Nolan D S (2004). Tropical cyclone activity and global climate.Bull Am Meteorol Soc, 85: 666–667

[17]

Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization.Geosci Model Dev, 9(5): 1937–1958

[18]

Gettelman A, Mills M J, Kinnison D E, Garcia R R, Smith A K, Marsh D R, Tilmes S, Vitt F, Bardeen C G, McInerny J, Liu H L, Solomon S C, Polvani L M, Emmons L K, Lamarque J F, Richter J H, Glanville A S, Bacmeister J T, Phillips A S, Neale R B, Simpson I R, DuVivier A K, Hodzic A, Randel W J (2019). The Whole Atmosphere Community Climate Model Version 6 (WACCM6).J Geophys Res Atmos, 124(23): 12380–12403

[19]

Gilford D M, Giguere J, Pershing A J (2024). Human-caused ocean warming has intensified recent hurricanes.Environmental Research: Climate, 3(4): 045019

[20]

Hosking J R M, Wallis J R, Wood E F (1985). Estimation of the generalized extreme-value distribution by the method of probability-weighted moments.Technometrics, 27(3): 251–261

[21]

Hosking J, Wallis J R (19971997. Regional Frequency Analysis. Cambridge University Press

[22]

IPCC AR6 WG1 SPM (20212021. IPCC AR6 WG1 Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, E, Lonnoy J, Matthews B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B, eds. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

[23]

Kalidindi S, Bala G, Modak A, Caldeira K (2015). Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols.Clim Dyn, 44(9−10): 2909–2925

[24]

Kharin V V, Zwiers F W, Zhang X, Wehner M (2013). Changes in temperature and precipitation extremes in the CMIP5 ensemble.Clim Change, 119(2): 345–357

[25]

Kravitz B, MacMartin D G, Mills M J, Richter J H, Tilmes S, Lamarque J F, Tribbia J J, Vitt F (2017). First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives.J Geophys Res Atmos, 122(23): 12616–12634

[26]

Kravitz B, Robock A, Tilmes S, Boucher O, English J M, Irvine P J, Jones A, Lawrence M G, MacCracken M, Muri H, Moore J C, Niemeier U, Phipps S J, Sillmann J, Storelvmo T, Wang H, Watanabe S (2015). The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results.Geosci Model Dev, 8(10): 3379–3392

[27]

Li C, Zwiers F, Zhang X, Li G, Sun Y, Wehner M (2021). Changes in annual extremes of daily temperature and precipitation in CMIP6 Models.J Clim, 34(9): 3441–3460

[28]

Liu Z, Lang X, Jiang D (2024). Stratospheric aerosol injection geoengineering would mitigate greenhouse gas-induced drying and affect global drought patterns.Journal of Geophysical Research: Atmospheres, 129: e2023JD039988

[29]

MacMartin D G, Wang W, Kravitz B, Tilmes S, Richter J H, Mills M J (2019). Timescale for detecting the climate response to stratospheric aerosol geoengineering.J Geophys Res Atmos, 124(3): 1233–1247

[30]

Maher P, Vallis G K, Sherwood S C, Webb M J, Sansom P G (2018). The impact of parameterized convection on climatological precipitation in atmospheric global climate models.Geophys Res Lett, 45(8): 3728–3736

[31]

Morrison A L, Barnes E A, Hurrell J W (2024). Natural variability can mask forced permafrost response to stratospheric aerosol injection in the ARISE-SAI-1.5 simulations.Earths Future, 12: e2023EF004191

[32]

NASEM (20212021. Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance. National Academies of Sciences, Engineering, and Medicine. Washington, D.C.: The National Academies Press

[33]

O’Neill B C, Tebaldi C, van Vuuren D P, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J F, Lowe J, Meehl G A, Moss R, Riahi K, Sanderson B M (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.Geosci Model Dev, 9(9): 3461–3482

[34]

Odoulami R C, New M, Wolski P, Guillemet G, Pinto I, Lennard C, Muri H, Tilmes S (2020). Stratospheric aerosol geoengineering could lower future risk of ‘Day Zero’ level droughts in Cape Town.Environ Res Lett, 15(12): 124007

[35]

OSTP (20232023. Congressionally Mandated Research Plan and an Initial Research Governance Framework Related to Solar Radiation Modification. Office of Science and Technology Policy, Washinton, D.C.

[36]

Otto F E L, Zachariah M, Saeed F, Siddiqi A, Kamil S, Mushtaq H, Arulalan T, AchutaRao K, Chaithra S T, Barnes C, Philip S, Kew S, Vautard R, Koren G, Pinto I, Wolski P, Vahlberg M, Singh R, Arrighi J, van Aalst M, Thalheimer L, Raju E, Li S, Yang W, Harrington L J, Clarke B (2023). Climate change increased extreme monsoon rainfall, flooding highly vulnerable communities in Pakistan.Environmental Research: Climate, 2(2): 025001

[37]

Reed K A, Wehner M F (2023). Real-time attribution of the influence of climate change on extreme weather events: a storyline case study of Hurricane Ian rainfall.Environmental Research: Climate, 2(4): 043001

[38]

Reed K, Wehner M F, Stansfield A M, Zarzycki C M (2021). Anthropogenic influence on Hurricane Dorian’s extreme rainfall.Bull Am Meteorol Soc, 102(1): S9–S15

[39]

Riahi K, van Vuuren D P, Kriegler E, Edmonds J, O’Neill B C, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma J C, Samir K C, Leimbach M, Jiang L, Kram , T , Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva L A, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman J C, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview.Global Environmental Change, 42: 153–168

[40]

Richter J H, Visioni D, MacMartin D G, Bailey D A, Rosenbloom N, Dobbins B, Lee W R, Tye M, Lamarque J F (2022). Assessing responses and impacts of solar climate intervention on the earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations.Geosci Model Dev, 15(22): 8221–8243

[41]

Ricke K, Wan J S, Saenger M, Lutsko N J (2023). Hydrological consequences of solar geoengineering.Annu Rev Earth Planet Sci, 51(1): 447–470

[42]

Roberts M J, Camp J, Seddon J, Vidale P L, Hodges K, Vanniere B, Mecking J, Haarsma R, Bellucci A, Scoccimarro E, Caron L P, Chauvin F, Terray L, Valcke S, Moine M P, Putrasahan D, Roberts C, Senan R, Zarzycki C, Ullrich P (2020). Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble.J Clim, 33(7): 2557–2583

[43]

Rosa D, Collins W D (2013). A case study of subdaily simulated and observed continental convective precipitation: CMIP5 and multiscale global climate models comparison.Geophys Res Lett, 40(22): 5999–6003

[44]

Santer B D, Wehner M F, Wigley T M L, Sausen R, Meehl G A, Taylor K E, Ammann C, Arblaster J, Washington W M, Boyle J S, Brüggemann W (2003). Contributions of anthropogenic and natural forcing to recent tropopause height changes.Science, 301(5632): 479–483

[45]

Seneviratne S I, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, Ghosh S, Iskandar I, Kossin J, Lewis S, Otto F, Pinto I, Satoh M, Vicente-Serrano S M, Wehner M, Zhou B (20212021. Weather and climate extreme events in a changing climate. In: Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Pé C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B, eds. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA

[46]

Sobel A H, Wing A A, Camargo S J, Patricola C M, Vecchi G A, Lee C Y, Tippett M K (2021). Tropical cyclone frequency.Earths Future, 9: e2021EF002275

[47]

Stone D A, Christidis N, Folland C, Perkins-Kirkpatrick S, Perlwitz J, Shiogama H, Wehner M F, Wolski P, Cholia S, Krishnan H, Murray D, Angélil O, Beyerle U, Ciavarella A, Dittus A, Quan X W, Tadross M (2019). Experiment design of the international CLIVAR C20C+ detection and attribution project.Weather Clim Extrem, 24: 100206

[48]

Tabazadeh A, Turco R P, Jacobson M Z (1994). A model for studying the composition and chemical effects of stratospheric aerosols.J Geophys Res, 99(D6): 12897–12914

[49]

Tilmes S, Richter J H, Kravitz B, MacMartin D G, Mills M J, Simpson I R, Glanville A S, Fasullo J T, Phillips A S, Lamarque J F, Tribbia J, Edwards J, Mickelson S, Ghosh S (2018). CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project.Bull Am Meteorol Soc, 99(11): 2361–2371

[50]

Tilmes S, Richter J H, Mills M J, Kravitz B, MacMartin D G, Vitt F, Tribbia J J, Lamarque J F (2017). Sensitivity of aerosol distribution and climate response to stratospheric SO2 injection locations.J Geophys Res Atmos, 122(23): 12591–12615

[51]

Tilmes S, Visioni D, Jones A, Haywood J, Séférian R, Nabat P, Boucher O, Bednarz E M, Niemeier U (2022). Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations.Atmos Chem Phys, 22(7): 4557–4579

[52]

Tradowsky J S, Philip S Y, Kreienkamp F, Kew S F, Lorenz P, Arrighi J, Bettmann T, Caluwaerts S, Chan S C, De Cruz L, de Vries H, Demuth N, Ferrone A, Fischer E M, Fowler H J, Goergen K, Heinrich D, Henrichs Y, Kaspar F, Lenderink G, Nilson E, Otto F E L, Ragone F, Seneviratne S I, Singh R K, Skålevåg A, Termonia P, Thalheimer L, van Aalst M, Van den Bergh J, Van de Vyver H, Vannitsem S, van Oldenborgh G J, Van Schaeybroeck B, Vautard R, Vonk D, Wanders N (2023). Attribution of the heavy rainfall events leading to severe flooding in Western Europe during July 2021.Clim Change, 176(7): 90

[53]

Tselioudis G, Rossow W B, Jakob C, Remillard J, Tropf D, Zhang Y (2021). Evaluation of clouds, radiation, and precipitation in CMIP6 models using global weather states derived from ISCCP-H cloud property data.J Clim, 34: 7311–7324

[54]

Visioni D, Bednarz E M, MacMartin D G, Kravitz B, Goddard P B (2023). The choice of baseline period influences the assessments of the outcomes of stratospheric aerosol injection.Earths Future, 11: e2023EF003851

[55]

Visioni D, MacMartin D G, Kravitz B, Boucher O, Jones A, Lurton T, Martine M, Mills M J, Nabat P, Niemeier U, Séférian R, Tilmes S (2021). Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations.Atmos Chem Phys, 21(13): 10039–10063

[56]

Walsh K J E E, Camargo S J, Vecchi G A, Daloz A S, Elsner J, Emanuel K, Horn M, Lim Y K, Roberts M, Patricola C, Scoccimarro E, Sobel A H, Strazzo S, Villarini G, Wehner M, Zhao M, Kossin J P, La Row T, Oouchi K, Schubert S, Wang H, Bacmeister J, Chang P, Chauvin F, Jablonowski C, Kumar A, Murakami H, Ose T, Reed K A, Saravanan R, Yamada Y, Zarzycki C M, Luigi Vidale P, Jonas J A, Henderson N (2015). Hurricanes and climate: the U. S. Clivar working group on hurricanes.Bull Am Meteorol Soc, 96(6): 997–1017

[57]

Wehner M F, Duffy M L, Risser M, Paciorek C J, Stone D A, Pall P (2024). On the uncertainty of long-period return values of extreme daily precipitation.Front Clim, 6: 1343072

[58]

Wehner M F, Kossin J P (2024). The growing inadequacy of an open-ended Saffir–Simpson hurricane wind scale in a warming world.Proc Natl Acad Sci USA, 121(7): e2308901121

[59]

Wehner M F, Reed KA, Li F, Prabhat , Bacmeister J, Chen C-T, Paciorek C, Gleckler P J, Sperber K R, Collins W D, Gettelman A, Jablonowski J (2014). The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1.J Adv Model Earth Syst, 6(4): 980–997

[60]

Wehner M, Prabhat , Reed K A, Stone D, Collins W D, Bacmeister J (2015). Resolution dependence of future tropical cyclone projections of CAM5.1 in the U. S. CLIVAR Hurricane Working Group idealized configurations.J Clim, 28(10): 3905–3925

[61]

Wehner M, Stone D, Shiogama H, Wolski P, Ciavarella A, Christidis N, Krishnan H (2018). Early 21st century anthropogenic changes in extremely hot days as simulated by the C20C+ detection and attribution multi-model ensemble.Weather Clim Extrem, 20: 1–8

[62]

Zhang Y, Jin Z, Ottaviani M (2023). Comparison of clouds and cloud feedback between AMIP5 and AMIP6.Atmosphere (Basel), 14(6): 978

RIGHTS & PERMISSIONS

The Author(s). This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (9185KB)

Supplementary files

Supporting information

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/