Partially empirical model-based water depth retrieval in shallow sea using GF5-AHSI hyperspectral remote sensing data: a case study on Meizhou Bay in Fujian Province, China

Xiaoai DAI , Yunfeng SHAN , Cheng LI , Hao CHEN , Tangrui DAI , Ge QU , Tianyi XIE , Chengbo TONG , Htun NAING , Min ZHANG

Front. Earth Sci. ››

PDF (7252KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-025-1160-3
RESEARCH ARTICLE

Partially empirical model-based water depth retrieval in shallow sea using GF5-AHSI hyperspectral remote sensing data: a case study on Meizhou Bay in Fujian Province, China

Author information +
History +
PDF (7252KB)

Abstract

Bathymetric mapping using quantitative remote sensing techniques is a crucial research domain for accurately retrieving oceanic depths. This study uses GF5-AHSI hyperspectral remote sensing data to evaluate the accuracy of three semi-empirical models for shallow water depth retrieval: single-band, multi-band, and band-ratio models. The methodology involved parameter extraction, optimal band selection, and combining bands to create the models. A Pearson correlation analysis was conducted to assess parameter sensitivity, optimizing the models for water depth retrieval. The models’ precision was evaluated by comparing their outputs with actual underwater topography measurements from Meizhou Bay, Fujian Province. Error margins in estimated water depths ranged from 10% to 50% across the three models, with accuracy generally improving at greater depths. Among the models, the band-ratio model showed the highest reliability, followed by the multi-band model, and the single-band model was the least reliable. However, in depths greater than 30 m, the single-band model’s error margin could be reduced to within 10%, surpassing the performance of the multi-band and band-ratio models. A spectral reflectance sensitivity test revealed variations in reflectance across different water depths, with a slight increase in the near-infrared band due to water turbidity. To further improve model accuracy, strategies must be implemented to mitigate the interference of suspended sediments and reduce noise, thereby enhancing the reliability of water depth retrieval.

Graphical abstract

Keywords

GF5-AHSI / water depth retrieval / Pearson correlation coefficient / partially theoretical and empirical model

Cite this article

Download citation ▾
Xiaoai DAI, Yunfeng SHAN, Cheng LI, Hao CHEN, Tangrui DAI, Ge QU, Tianyi XIE, Chengbo TONG, Htun NAING, Min ZHANG. Partially empirical model-based water depth retrieval in shallow sea using GF5-AHSI hyperspectral remote sensing data: a case study on Meizhou Bay in Fujian Province, China. Front. Earth Sci. DOI:10.1007/s11707-025-1160-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andréfouët S, Bionaz O (2021). Lessons from a global remote sensing mapping project. A review of the impact of the Millennium Coral Reef Mapping Project for science and management.Sci Total Environ, 776: 145987

[2]

Arabi B, Salama M S, van der Wal D, Pitarch J, Verhoef W (2020). The impact of sea bottom effects on the retrieval of water constituent concentrations from MERIS and OLCI images in shallow tidal waters supported by radiative transfer modeling.Remote Sens Environ, 237: 111596

[3]

Ashphaq M, Srivastava P K, Mitra D (2021). Review of near-shore satellite derived bathymetry: classification and account of five decades of coastal bathymetry research.J Ocean Eng Sci, 6: 340–359

[4]

Avrahamy R, Milgrom B, Zohar M, Auslender M, Hava S (2019). Improving object imaging with sea glinted background using polarization method: analysis and operator survey.IEEE Trans Geosci Remote Sens, 57: 8764–8774

[5]

Borrelli M, Smith T L, Mague S T (2022). Vessel-based, shallow water mapping with a phase-measuring sidescan sonar.Estuaries Coasts, 45(4): 961–979

[6]

Ceyhun Ö, Yalçın A (2010). Remote sensing of water depths in shallow waters via artificial neural networks.Estuar Coast Shelf Sci, 89(1): 89–96

[7]

Chen B Q, Yang Y M, Luo K (2017). Retrieval of island shallow water depth from the GaoFen-1 multi-spectral imagery.J Tropical Oceanograph, 36: 70–78

[8]

Chen H, Yunus A P, Nukapothula S, Avtar R (2022). Modelling Arctic coastal plain lake depths using machine learning and Google Earth Engine.Phys Chem Earth Parts ABC, 126: 103138

[9]

Chen L F, Shang H Z, Fan M, Tao J H, Husi L, Zhang Y, Wang H M, Cheng L X, Zhang X X, Wei L S, Li M Y, Zou M M, Liu D D (2021). Mission overview of the GF-5 satellite for atmospheric parameter monitoring.Nation Remot Sens Bull, 25(9): 1917–1931

[10]

Chen Y, Duan S B, Labed J, Li Z L (2019). Development of a split-window algorithm for estimating sea surface temperature from the Chinese Gaofen-5 data.Int J Remote Sens, 40(5−6): 1621–1639

[11]

Cheng J, Ma Y, Zhang J Y (2021). Water-depth-zoning inversion based on the relationship between two-band radiance data and the depth-invariant index.Reg Stud Mar Sci, 44: 101790

[12]

Chennu A, Färber P, Volkenborn N, Al-Najjar M A A, Janssen F, de Beer D, Polerecky L (2013). Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments.Limnol Oceanogr Methods, 11(10): 511–528

[13]

Dai X A, Cheng J Y, Gao Y, Guo S H, Yang X P, Xu X Q, Cen Y (2020a). Deep belief network for feature extraction of urban artificial targets.Math Probl Eng, 2020: 2387823

[14]

Dai X A, He X W, Guo S H, Liu S H, Ji F J, Ruan H H (2021). Research on hyper-spectral remote sensing image classification by applying stacked de-noising auto-encoders neural network.Multimedia Tools Appl, 80(14): 21219–21239

[15]

Dai X A, Yang X P, Wang M L, Gao Y, Liu S H, Zhang J M (2020b). The dynamic change of Bosten Lake area in response to climate in the past 30 years.Water, 12(1): 4

[16]

Dang F X, Ding Q (2003). A technique for extracting water depth information from multispectral scanner data in the South China Sea.Marine Sci Bull, 22: 55–60

[17]

Fernández-Habas J, Carriere Cañada M, García Moreno A M, Leal-Murillo J R, González-Dugo M P, Abellanas Oar B, Gómez-Giráldez P J, Fernández-Rebollo P (2022). Estimating pasture quality of Mediterranean grasslands using hyperspectral narrow bands from field spectroscopy by Random Forest and PLS regressions.Comput Electron Agric, 192: 106614

[18]

Garcia R A, Lee Z, Barnes B B, Hu C, Dierssen H M, Hochberg E J (2020). Benthic classification and IOP retrievals in shallow water environments using MERIS imagery.Remote Sens Environ, 249: 112015

[19]

Gawehn M, van Dongeren A, de Vries S, Swinkels C, Hoekstra R, Aarninkhof S, Friedman J (2020). The application of a radar-based depth inversion method to monitor near-shore nourishments on an open sandy coast and an ebb-tidal delta.Coast Eng, 159: 103716

[20]

Giordano F, Mattei G, Parente C, Peluso F, Santamaria R (2016). Integrating sensors into a marine drone for bathymetric 3D Surveys in shallow waters.Sensors (Basel), 16(1): 41

[21]

Grøn O, Boldreel L O, Smith M F, Joy S, Tayong Boumda R, Mäder A, Bleicher N, Madsen B, Cvikel D, Nilsson B, Sjöström A, Galili E, Nørmark E, Hu C, Ren Q, Blondel P, Gao X, Stråkendal P, Dell’Anno A (2021). Acoustic mapping of submerged stone age sites—A HALD approach.Remote Sens (Basel), 13(3): 445

[22]

He J C, Lin J Y, Ma M G, Liao X H (2021). Mapping topo-bathymetry of transparent tufa lakes using UAV-based photogrammetry and RGB imagery.Geomorphology, 389: 107832

[23]

Hedley J, Roelfsema C, Phinn S R (2009). Efficient radiative transfer model inversion for remote sensing applications.Remote Sens Environ, 113(11): 2527–2532

[24]

Hickman G D, Hogg J E (1969). Application of an airborne pulsed laser for near shore bathymetric measurements.Remote Sens Environ, 1(1): 47–58

[25]

Honkavaara E, Markelin L, Rosnell T, Nurminen K (2012). Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry.ISPRS J Photogramm Remote Sens, 67: 13–26

[26]

Hou T, Sun W, Chen C, Yang G, Meng X, Peng J (2022). Marine floating raft aquaculture extraction of hyperspectral remote sensing images based decision tree algorithm.Int J Appl Earth Obs Geoinf, 111: 102846

[27]

Hsu H J, Huang C Y, Jasinski M, Li Y, Gao H, Yamanokuchi T, Wang C G, Chang T M, Ren H, Kuo C Y, Tseng K H (2021). A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: a case study in the South China Sea.ISPRS J Photogramm Remote Sens, 178: 1–19

[28]

Jawak S D, Vadlamani S S, Luis A J (2015). A synoptic review on deriving bathymetry information using remote sensing technologies: models, methods and comparisons.Adv Remote Sens, 4(2): 147–162

[29]

Jay S, Guillaume M (2014). A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data.Remote Sens Environ, 147: 121–132

[30]

Jay S, Guillaume M, Minghelli A, Deville Y, Chami M, Lafrance B, Serfaty V (2017). Hyperspectral remote sensing of shallow waters: considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance.Remote Sens Environ, 200: 352–367

[31]

Jiang X, Duan H, Liao J, Guo P, Huang C, Xue X (2023). Comparative research on multi-algorithm of soil salinity monitoring based on Gaofen-5, Sentinel-1, and Sentinel-2.Int J Remote Sens, 44(15): 4704–4726

[32]

Kennedy E V, Roelfsema C M, Lyons M B, Kovacs E M, Borrego-Acevedo R, Roe M, Phinn S R, Larsen K, Murray N J, Yuwono D, Wolff J, Tudman P (2021). Reef Cover, a coral reef classification for global habitat mapping from remote sensing.Sci Data, 8(1): 196

[33]

Kotchenova S Y, Vermote E F, Matarrese R, Klemm F J (2006). Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance.Appl Opt, 45(26): 6762–6774

[34]

Kummerow C D, Poczatek J C, Almond S, Berg W, Jarrett O, Jones A, Kantner M, Kuo C P (2022). Hyperspectral microwave sensors—Advantages and limitations.IEEE J Sel Top Appl Earth Obs Remote Sens, 15: 764–775

[35]

Kutser T, Hedley J, Giardino C, Roelfsema C, Brando V E (2020). Remote sensing of shallow waters – a 50 year retrospective and future directions.Remote Sens Environ, 240: 111619

[36]

Lafon V, Froidefond J M, Lahet F, Castaing P (2002). SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements.Remote Sens Environ, 81(1): 136–148

[37]

Lee Z P, Carder K L, Mobley C D, Steward R G, Patch J S (1999). Hyperspectral remote sensing for shallow waters: 2. deriving bottom depths and water properties by optimization.Appl Opt, 38(18): 3831–3843

[38]

Li J W, Knapp D E, Lyons M, Roelfsema C, Phinn S, Schill S R, Asner G P (2021). Automated global shallow water bathymetry mapping using Google Earth engine.Remote Sens (Basel), 13(8): 1469

[39]

Li J, Tian H J, Xu W B, Zhai W K (2015). Study on water depth derived models based on remote sensing in the coastal seawaters of Bohai Bay.Sci Survey Map, 40: 56–60

[40]

Li Z X, Peng Z T, Zhang Z, Chu Y J, Xu C H, Yao S L, García-Fernández Á F, Zhu X H, Yue Y, Levers A, Zhang J, Ma J (2023). Exploring modern bathymetry: a comprehensive review of data acquisition devices, model accuracy, and interpolation techniques for enhanced underwater mapping.Front Mar Sci, 10: 1178845

[41]

Liu M, Feng D (2025). Spatiotemporal characteristics of Pearl River water environment in Guangzhou based on remote sensing image inversion.Pearl River, 46(4): 1–15

[42]

Liu X X, Xue X Z (2024). Construction and application of a coastline ecological index: a case study of Fujian Province, China.Sustainability (Basel), 16(13): 5480

[43]

Louchard E M, Reid R P, Stephens F C, Davis C O, Leathers R A, Downes T V (2003). Optical remote sensing of benthic habitats and bathymetry in coastal environments at Lee Stocking Island, Bahamas: a comparative spectral classification approach.Limnol Oceanogr, 48: 511–521

[44]

Ma T, Ding S S, Li Y, Fan J J (2023). A review of terrain aided navigation for underwater vehicles.Ocean Eng, 281: 114779

[45]

Marcello J, Eugenio F, Martín J, Marqués F (2018). Seabed mapping in coastal shallow waters using high resolution multispectral and hyperspectral imagery.Remote Sens (Basel), 10(8): 1208

[46]

Merchant M A (2023). Modelling inland Arctic bathymetry from space using cloud-based machine learning and Sentinel-2.Adv Space Res, 72(10): 4256–4271

[47]

Mi J, Zhang M, Zhu Z C, Vuik V, Wen J H, Gao H K, Bouma T J (2022). Morphological wave attenuation of the nature-based flood defense: a case study from Chongming Dongtan Shoal, China.Sci Total Environ, 831: 154813

[48]

Minghelli-Roman A, Dupouy C (2014). Correction of the water column attenuation: application to the seabed mapping of the lagoon of New Caledonia using MERIS images.IEEE J Sel Top Appl Earth Obs Remote Sens, 7(6): 2619–2629

[49]

Mobley C D, Sundman L K, Davis C O, Bowles J H, Downes T V, Leathers R A, Montes M J, Bissett W P, Kohler D D R, Reid R P, Louchard E M, Gleason A (2005). Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables.Appl Opt, 44(17): 3576–3592

[50]

Nan Y, Jianhui L, Wenbo M, Wangjun L, Di W, Wanchao G, Changhao S (2020). Water depth retrieval models of East Dongting Lake, China, using GF-1 multi-spectral remote sensing images.Glob Ecol Conserv, 22: e01004

[51]

Niroumand-Jadidi M, Vitti A, Lyzenga D R (2018). Multiple Optimal Depth Predictors Analysis (MODPA) for river bathymetry: findings from spectroradiometry, simulations, and satellite imagery.Remote Sens Environ, 218: 132–147

[52]

Paredes J M, Spero R E (1983). Water depth mapping from passive remote sensing data under a generalized ratio assumption.Appl Opt, 22(8): 1134–1135

[53]

Pattanaik A, Sahu K, Bhutiyani M R (2015). Estimation of shallow water bathymetry using IRS-multispectral imagery of Odisha Coast, India.Aquat Procedia, 4: 173–181

[54]

Petit T, Bajjouk T, Mouquet P, Rochette S, Vozel B, Delacourt C (2017). Hyperspectral remote sensing of coral reefs by semi-analytical model inversion – Comparison of different inversion setups.Remote Sens Environ, 190: 348–365

[55]

Roelfsema C, Kovacs E, Ortiz J C, Wolff N H, Callaghan D, Wettle M, Ronan M, Hamylton S M, Mumby P J, Phinn S (2018). Coral reef habitat mapping: a combination of object-based image analysis and ecological modelling.Remote Sens Environ, 208: 27–41

[56]

Rogers A, Manes C, Tsuzaki T (2020). Measuring the geometry of a developing scour hole in clear-water conditions using underwater sonar scanning.Int J Sediment Res, 35(1): 105–114

[57]

Roy S, Das B S (2022). Estimation of euphotic zone depth in shallow inland water using inherent optical properties and multispectral remote sensing imagery.J Hydrol (Amst), 612: 128293

[58]

Russell B J, Dierssen H M, Hochberg E J (2019). Water column optical properties of Pacific Coral Reefs across geomorphic zones and in comparison to offshore waters.Remote Sens (Basel), 11(15): 1757

[59]

Shen Z Y, Song J N, Mittal K, Gupta S (2016). An autonomous integrated system for 3-D underwater terrain map reconstruction. OCEANS 2016 MTS/IEEE Monterey, pp. 1–6

[60]

Su H J, Yao W J, Wu Z Y, Zheng P, Du Q (2021). Kernel low-rank representation with elastic net for China coastal wetland land cover classification using GF-5 hyperspectral imagery.ISPRS J Photogramm Remote Sens, 171: 238–252

[61]

Vandermeulen R A, Mannino A, Neeley A, Werdell J, Arnone R (2017). Determining the optimal spectral sampling frequency and uncertainty thresholds for hyperspectral remote sensing of ocean color.Opt Express, 25(16): A785–A797

[62]

Wan L, Lin Y, Zhang H, Wang F, Liu M, Lin H (2020). GF-5 hyperspectral data for species mapping of mangrove in Mai Po, Hong Kong.Remote Sens (Basel), 12(4): 656

[63]

Wen Q, Yang Z, Zhao T (2024). A monitoring study on tidal-flat structures in the Inner Lingding Sea for Pearl River Estuary during 1988—2021.Water Resour Hydropower Eng, 55: 82–92

[64]

Yang G, Huang K, Sun W, Meng X, Mao D, Ge Y (2022). Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove.ISPRS J Photogramm Remote Sens, 189: 236–254

[65]

Yao Y Z, Shi X (2015). Alternating scanning orders and combining algorithms to improve the efficiency of flow accumulation calculation.Int J Geogr Inf Sci, 29(7): 1214–1239

[66]

Yao Y, Tian H, Shi H, Pan S, Xu R, Pan N, Canadell J G (2020). Increased global nitrous oxide emissions from streams and rivers in the Anthropocene.Nat Clim Chang, 10(2): 138–142

[67]

Zhang M, Dai Z J, Bouma T J, Bricker J, Townend I, Wen J H, Zhao T T G, Cai H Y (2021). Tidal-flat reclamation aggravates potential risk from storm impacts.Coast Eng, 166: 103868

[68]

Zhang M, Schwarz C, Lin W, Naing H, Cai H, Zhu Z (2023). A new perspective on the impacts of Spartina alterniflora invasion on Chinese wetlands in the context of climate change: a case study of the Jiuduansha Shoals, Yangtze Estuary.Sci Total Environ, 868: 161477

[69]

Zhang Q, Zhou M, Li Q L, Sun L, Hu M H, Qiu S (2020a). GF5-based water quality monitoring of East Dongting Lake, China.IOP Conf Ser Earth Environ Sci, 509: 012031

[70]

Zhang Y Y, Huang R Y, Yu K F, Fan M S, Zhou G Q (2020b). Estimation of shallow water depth based on satellite hyperspectral images.J of Geo-inform Sci, 22(7): 1567–1577

[71]

Zhao X, Tian X P, Wang H Y, Liu Q, Liang S L (2020). Chapter 4 - Atmospheric correction of optical imagery. In: Liang S, Wang J, eds. Advanced Remote Sensing (Second Edition). Academic Press, 131–156

[72]

Zhou W N, Tang Y M, Jing W L, Li Y, Yang J, Deng Y B, Zhang Y M (2023). A comparison of machine learning and empirical approaches for deriving bathymetry from multispectral imagery.Remote Sens (Basel), 15(2): 393

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7252KB)

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/