An improved method for extracting cellulose from fossil wood and its paleoclimatic implications

Donghao WU , Xin WANG , Yang DENG , Mi WANG , Gang HU , Xuan DING , Linlin GAO , Keyan FANG , Xiaohua GOU

Front. Earth Sci. ›› 2025, Vol. 19 ›› Issue (3) : 380 -388.

PDF (3078KB)
Front. Earth Sci. ›› 2025, Vol. 19 ›› Issue (3) : 380 -388. DOI: 10.1007/s11707-025-1153-2
RESEARCH ARTICLE

An improved method for extracting cellulose from fossil wood and its paleoclimatic implications

Author information +
History +
PDF (3078KB)

Abstract

The stable carbon isotope composition of cellulose (δ13Ccell) in fossil wood is valuable for reconstructing past climatic and ecological changes, on seasonal to decadal timescales. However, extracting cellulose from fossil wood is challenging, leading to a lack of δ13Ccell data over deep time; moreover, there is a debate about whether the stable carbon isotope composition of whole wood (δ13Cwood) can reliably reflect past paleoclimatic or palaeoecological conditions. Here, we present an improved method for extracting cellulose from fossil wood. We initially used conventional methods to extract cellulose from a fossil wood sample a drill core from the Yuncheng Basin, near the Chinese Loess Plateau; however, we were unsuccessful. Subsequently, we successfully extracted cellulose and recovered 94% of the cellulose after modifying the conventional procedure. This involved increasing the reaction time during lignin removal, reducing the concentration of NaOH solution during hemicellulose removal, and employing multiple centrifugation steps for sample separation instead of a single step. We examined the relationship between δ13Ccell and δ13Cwood values (n = 136), and the results revealed a positive correlation between them (R2 = 0.51, P < 0.001). This indicates that δ13Cwood is a dependable proxy for qualitative paleoclimatic reconstruction. However, the apparent enrichment factor ε between δ13Ccell and δ13Cwood values varied between samples, highlighting the need for caution when using records of δ13Cwood for quantitative paleoenvironmental reconstruction.

Graphical abstract

Keywords

fossil wood / stable carbon isotopes / tree rings / cellulose extraction / Paleoclimatic reconstruction

Cite this article

Download citation ▾
Donghao WU, Xin WANG, Yang DENG, Mi WANG, Gang HU, Xuan DING, Linlin GAO, Keyan FANG, Xiaohua GOU. An improved method for extracting cellulose from fossil wood and its paleoclimatic implications. Front. Earth Sci., 2025, 19(3): 380-388 DOI:10.1007/s11707-025-1153-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anchukaitis K J, Evans M N, Lange T, Smith D R, Leavitt S W, Schrag D P (2008). Consequences of a rapid cellulose extraction technique for oxygen isotope and radiocarbon analyses.Anal Chem, 80(6): 2035–2041

[2]

Au R, Tardif J C (2009). Chemical pretreatment of Thuja occidentalis tree rings: implications for dendroisotopic studies.Can J For Res, 39(9): 1777–1784

[3]

Bechtel A, Sachsenhofer R F, Markic M, Gratzer R, Lücke A, Püttmann W (2003). Paleoenvironmental implications from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia).Organic Geochem, 34(9): 1–1298

[4]

Benner R, Fogel M L, Sprague E K, Hodson R E (1987). Depletion of 13C in lignin and its implications for stable carbon isotope studies.Nature, 329(6141): 708–710

[5]

Borella S, Leuenberger M, Saurer M, Siegwolf R (1998). Reducing uncertainties in δ13C analysis of tree rings: pooling, milling, and cellulose extraction.J Geophys Res, 103(D16): 19519–19526

[6]

Brendel O, Iannetta P P M, Stewart D (2000). A rapid and simple method to isolate pure alpha-cellulose.Phytochem Anal, 11(1): 7–10

[7]

Cullen L E, Grierson P F (2006). Is cellulose extraction necessary for developing stable carbon and oxygen isotopes chronologies from Callitris glaucophylla.Palaeogeogr Palaeoclimatol Palaeoecol, 236(3−4): 206–216

[8]

Evans M N, Schrag D P (2004). A stable isotope-based approach to tropical dendroclimatology.Geochim Cosmochim Acta, 68(16): 3295–3305

[9]

Gaudinski J B, Dawson T E, Quideau S, Schuur E A G, Roden J S, Trumbore S E, Sandquist D R, Oh S W, Wasylishen R E (2005). Comparative analysis of cellulose preparation techniques for use with 13C, 14C, and 18O isotopic measurements.Anal Chem, 77(22): 7212–7224

[10]

Gelbrich J, Mai C, Militz H (2008). Chemical changes in wood degraded by bacteria.Int Biodeterior Biodegradation, 61(1): 24–32

[11]

Ghavidel A, Hofmann T, Bak M, Sandu I, Vasilache V (2020). Comparative archaeometric characterization of recent and historical oak (Quercus spp.) wood. Wood Sci Technol, 54(5): 1121-1137

[12]

Green J W (1963). Methods of Carbohydrate Chemistry. New York: Academic Press, 9–21

[13]

Hedges J I, Cowie G L, Ertel J R, James Barbour R, Hatcher P G (1985). Degradation of carbohydrates and lignins in buried woods.Geochim Cosmochim Acta, 49(3): 701–711

[14]

Hook B A, Halfar J, Bollmann J, Gedalof Z, Azizur Rahman M, Reyes J, Schulze D J (2015). Extraction of α-cellulose from mummified wood for stable isotopic analysis. Chem Geol, 405: 19-27

[15]

Kagawa A, Sano M, Nakatsuka T, Ikeda T, Kubo S (2015). An optimized method for stable isotope analysis of tree rings by extracting cellulose directly from cross-sectional laths. Chem Geol, 393–394: 16–25

[16]

Leavitt S W, Danzer S R (1993). Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis.Anal Chem, 65(1): 87–89

[17]

Liu X H, Liu Y, Xu G B, Cai Q F, An W L, Wang W Z (2010). Pretreatment of the tree-ring samples for stable isotope analysis.J Glaciol Geocryol, 32(6): 1242–1250

[18]

Loader N J, Robertson I, McCarroll D (2003). Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings.Palaeogeogr Palaeoclimatol Palaeoecol, 196(3−4): 395–407

[19]

Long L P (2006). D/H Ratio Determination of Cellulose Nitrate from Tree Rings. Dissertation for Master’s Degree. Beijing: Chinese Academy of Sciences (in Chinese)

[20]

Lukens W E, Eze P, Schubert B A (2019). The effect of diagenesis on carbon isotope values of fossil wood.Geology, 47(10): 987–991

[21]

Ma L M, Liu Y, Zhao J F, An Z S (2003). Response of stable-carbon isotope composition of different tree-ring compounds to climatic change.Acta Ecol Sin, 23(12): 2607–2613

[22]

Macfarlane C, Warren C R, White D A, Adams M A (1999). A rapid and simple method for processing wood to crude cellulose for analysis of stable carbon isotopes in tree rings.Tree Physiol, 19(12): 831–835

[23]

Macko S A, Engel M H, Hartley G, Hatcher P, Helleur R, Jackman P, Silfer J A (1991). Isotopic compositions of individual carbohydrates as indicators of early diagenesis of organic matter in peat.Chem Geol, 93(1−2): 147–161

[24]

McCarroll D, Loader N J (2004). Stable isotopes in tree rings.Quat Sci Rev, 23(7−8): 771–801

[25]

Pawelczyk S, Pazdur A, Halas S (2004). Stable carbon isotopic composition of tree rings from a pine tree from Augustów Wilderness, Poland, as a temperature and local environment conditions indicator.Isotopes Environ Health Stud, 40(2): 145–154

[26]

Rani A, Zhao Y, Yan Q L, Wang Y, Ma R, Zhu Z Y, Wang B, Li T, Zhou X W, Hocart C H, Zhou Y P (2023). On the chemical purity and oxygen isotopic composition of α-cellulose extractable from higher plants and the implications for climate, metabolic and physiological studies.Anal Chem, 95(11): 4871–4879

[27]

Ren J B, Schubert B A, Lukens W E, Xu C X (2023). The oxygen isotope value of whole wood, α-cellulose, and holocellulose in modern and fossil wood.Chem Geol, 623: 121405

[28]

Ren J B, Yang S Y, Su T, Zang L B, Quan C (2017). Extracting the α-cellulose from Miocene mummified fossil wood of Xianfeng, Yunnan.World Geo, 36(3): 1001–1007

[29]

Richter S L, Johnson A H, Dranoff M M, LePage B A, Williams C J (2008). Oxygen isotope ratios in fossil wood cellulose: isotopic composition of Eocene-to Holocene-aged cellulose.Geochim Cosmochim Acta, 72(12): 2744–2753

[30]

Rinne K T, Boettger T, Loader N J, Robertson I, Switsur V R, Waterhouse J S (2005). On the purification of α-cellulose from resinous wood for stable isotope (H, C and O) analysis.Chem Geol, 222(1−2): 75–82

[31]

Rissanen J V, Grénman H, Xu C L, Willför S, Murzin D Y, Salmi T (2014). Obtaining spruce hemicelluloses of desired molar mass by using pressurized hot water extraction.Chem Sus Chem, 7(10): 2947–2953

[32]

Rutherford D W, Wershaw R L, Cox L G (2005). Changes in composition and porosity occurring during the thermal degradation of wood and wood components. US Department of the Interior, US Geological Survey

[33]

Savard M M, Bégin C, Marion J, Arseneault D, Bégin Y (2012). Evaluating the integrity of C and O isotopes in sub-fossil wood from boreal lakes. Palaeogeogr Palaeoclimatol Palaeoecol, 348–349: 21–31

[34]

Schleser G H, Frielingsdorf J, Blair A (1999). Carbon isotope behaviour in wood and cellulose during artificial aging.Chem Geol, 158(1−2): 121–130

[35]

Schubert B A, Jahren A H, Davydov S P, Warny S (2017). The transitional climate of the late Miocene Arctic: winter-dominated precipitation with high seasonal variability.Geology, 45(5): 447–450

[36]

Spiker E C, Hatcher P G (1987). The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood.Geochim Cosmochim Acta, 51(6): 1385–1391

[37]

Tao F X, Liu G S (1995). The cellulose extraction from geoarchives.Bull Mineral Petrol Geochemistry, 14(4): 245–246

[38]

van Bergen P F, Poole I (2002). Stable carbon isotopes of wood: a clue to palaeoclimate.Palaeogeogr Palaeoclimatol Palaeoecol, 182(1−2): 31–45

[39]

Vornlocher J R, Lukens W E, Schubert B A, Quan C (2021). Late Oligocene precipitation seasonality in East Asia based on δ13C profiles in fossil wood.Paleoceanogr Paleoclimatol, 36(4): e2021PA004229

[40]

Wang Q, Li C G, Tian G Q, Zhang W Z, Liu C, Ning L Y, Yue J, Cheng Z G, He C Y (2002). Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1 Ma.Sci China Ser D Earth Sci, 45(2): 110–122

[41]

Wilson A T, Grinsted M J (1977). 12C/13C in cellulose and lignin as paleothermometers.Nature, 265(5590): 133–135

[42]

Xu C X, Sano M, Nakatsuka T (2011). Tree ring cellulose δ18O of Fokienia hodginsii in northern Laos: a promising proxy to reconstruct ENSO.J Geophys Res, 116(D24): D24109

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3078KB)

405

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/