Geochemical characteristics of the late Eocene mudstones in the eastern Nima Basin, Xizang: implications for the paleoenvironment, provenance, and tectonic setting

Xinhang WANG , Siqi XIAO , Zhongpeng HAN , Yalin LI , Shuai LI , Jie DAI

Front. Earth Sci. ›› 2025, Vol. 19 ›› Issue (2) : 168 -187.

PDF (5013KB)
Front. Earth Sci. ›› 2025, Vol. 19 ›› Issue (2) : 168 -187. DOI: 10.1007/s11707-024-1123-0
RESEARCH ARTICLE

Geochemical characteristics of the late Eocene mudstones in the eastern Nima Basin, Xizang: implications for the paleoenvironment, provenance, and tectonic setting

Author information +
History +
PDF (5013KB)

Abstract

Paleoenvironmental reconstruction plays a pivotal role in providing insights into the uplift history of the Xizang Plateau during the Cenozoic. The Nima Basin, situated in the central Xizang Plateau, is crucial for studying the tectonic and geomorphic evolution of this region. The clastic composition and geochemical characteristics of the Niubao Formation hold considerable potential for unravelling the geological history and reconstructing depositional environments of central Xizang in the early Cenozoic. In this study, we present detailed geochemical characteristics to determine their provenance, paleoenvironmental conditions, and tectonic origins. The index of compositional variability (ICV > 1) of mudstones indicates that low compositional maturity sediments underwent weak sedimentary recycling. The chemical index of alteration (CIA: 59.8−72.9) reveals that parental rocks experienced a moderate chemical weathering degree. The paleoclimate indicators of the mudstones suggest an oxidizing and arid depositional environment, with a mean annual temperature (MAT) of 11.64°C ± 4.19°C. The geochemical evidence also demonstrates that the mudstones were derived from mixed felsic and intermediate igneous rocks that formed in a dominantly continental island arc tectonic setting. Similarities in the geochemical characteristics among the Niubao Formation and surrounding igneous rocks indicate that a continental-scale drainage system once drained westward in central Xizang. It is concluded that the central plateau experienced a cooler and drier climate coinciding with the presence of a large-scale drainage system during the late Eocene.

Graphical abstract

Keywords

late Eocene / geochemistry / Nima Basin / mudstone / paleoenvironment

Cite this article

Download citation ▾
Xinhang WANG, Siqi XIAO, Zhongpeng HAN, Yalin LI, Shuai LI, Jie DAI. Geochemical characteristics of the late Eocene mudstones in the eastern Nima Basin, Xizang: implications for the paleoenvironment, provenance, and tectonic setting. Front. Earth Sci., 2025, 19(2): 168-187 DOI:10.1007/s11707-024-1123-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Algeo T J, Maynard J B (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems.Chem Geol, 206(3−4): 289–318

[2]

Amorosi A, Centineo M C, Dinelli E, Lucchini F, Tateo F (2002). Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain.Sediment Geol, 151(3−4): 273–292

[3]

Amorosi A, Sammartino I, Dinelli E, Campo B, Guercia T, Trincardi F, Pellegrini C (2022). Provenance and sediment dispersal in the Po-Adriatic source-to-sink system unraveled by bulk-sediment geochemistry and its linkage to catchment geology.Earth Sci Rev, 234: 104202

[4]

Anderson S P, Dietrich W E, Brimhall G H Jr (2002). Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment.Geol Soc Am Bull, 114(9): 1143–1158

[5]

Armitage J J, Duller R A, Whittaker A C, Allen P A (2011). Transformation of tectonic and climatic signals from source to sedimentary archive.Nat Geosci, 4(4): 231–235

[6]

Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J, Trejo-Ramírez E (2017). Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting.Geol J, 52(4): 559–582

[7]

Armstrong-Altrin J S, Lee Y I, Verma S P, Worden R H (2009). Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam Formation, southern India: implications for paleoenvironment and diagenesis.Chem Erde, 69(1): 45–60

[8]

Armstrong-Altrin J S, Machain-Castillo M L, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza J A, Ruíz-Fernández A C (2015a). Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis.Cont Shelf Res, 95: 15–26

[9]

Armstrong-Altrin J S, Nagarajan R, Balaram V, Natalhy-Pineda O (2015b). Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting.J S Am Earth Sci, 64: 199–216

[10]

Armstrong-Altrin J S, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee Y I, Balaram V, Cruz-Martínez A, Avila-Ramírez G (2013). Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: implications for source-area weathering, provenance, and tectonic setting.C R Geosci, 345(4): 185–202

[11]

Asiedu D K, Suzuki S, Nogami K, Shibata T (2000). Geochemistry of Lower Cretaceous sediments, inner zone of Southwest Japan: constraints on provenance and tectonic environment.Geochem J, 34(2): 155–173

[12]

Ayers J C, Watson E B (1993). Rutile solubility and mobility in supercritical aqueous fluids.Contrib Mineral Petrol, 114(3): 321–330

[13]

Ayinla H A, Abdullah W H, Makeen Y M, Abubakar M B, Jauro A, Sarki Yandoka B M, Zainal Abidin N S (2017). Petrographic and geochemical characterization of the Upper Cretaceous coal and mudstones of Gombe Formation, Gongola sub-basin, northern Benue trough Nigeria: implication for organic matter preservation, paleodepositional environment and tectonic settings.Int J Coal Geol, 180: 67–82

[14]

Bai Y Y, Liu Z J, Sun P C, Liu R, Hu X F, Zhao H Q, Xu Y B (2015). Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale-and coal-bearing layers of the Meihe Basin, Northeast China.J Asian Earth Sci, 97: 89–101

[15]

BanerjiU S, DubeyC P, GoswamiV, Joshi K B (2022). Geochemical indicators in provenance estimation. In: Geochemical Treasures and Petrogenetic Processes. Singapore: Springer Nature Singapore, 95–121

[16]

Barshad I (1966). Factors affecting the frequency distribution of clay minerals in soils.Clays and Clay Minerals, 1966: 207

[17]

Basu A, Bickford M E, Deasy R (2016). Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: a dissent.Sediment Geol, 336: 26–35

[18]

Bhatia M R (1983). Plate tectonics and geochemical composition of sandstones.J Geol, 91(6): 611–627

[19]

Bhatia M R, Crook K A (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins.Contrib Mineral Petrol, 92(2): 181–193

[20]

Bi W J, Li Y L, Kamp P J J, Xu G Q, Zhang J W, Han Z P, Du L T, Wang C S, He H Y, Xu T K, Ma Z N (2023). Cretaceous–Cenozoic cooling history of the Qiangtang terrane and implications for Central Xizang formation.Geol Soc Am Bull, 135(5−6): 1587–1601

[21]

Bock B, McLennan S M, Hanson G N (1998). Geochemistry and provenance of the middle Ordovician Austin Glen member (Normanskill formation) and the Taconian orogeny in New England.Sedimentology, 45(4): 635–655

[22]

Botsyun S, Sepulchre P, Donnadieu Y, Risi C, Licht A, Caves Rugenstein J K (2019). Revised paleoaltimetry data show low Xizang Plateau elevation during the Eocene.Science, 363(6430): eaaq1436

[23]

Cao H S, Guo W, Shan X L, Ma L, Sun P C (2015). Paleolimnological environments and organic accumulation of the Nenjiang Formation in the Southeastern Songliao Basin, China.Oil Shale, 32(1): 5–24

[24]

Caracciolo L (2020). Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: review, application and future development.Earth Sci Rev, 209: 103226

[25]

Cerling T E, Harris J M, MacFadden B J, Leakey M G, Quade J, Eisenmann V, Ehleringer J R (1997). Global vegetation change through the Miocene/Pliocene boundary.Nature, 389(6647): 153–158

[26]

Chapman J B, Kapp P (2017). Xizang magmatism database.Geochem Geophys Geosyst, 18(11): 4229–4234

[27]

Chen L, Chen X H, Zhang B M, Zhang G T, Li H, Lin W B, Chen P, Hu H Y, Tian W (2020). Provenance and palaeoenvironment of Upper Devonian Shetianqiao Formation mudstones in Shaoyang Sag, Xiangzhong Depression, Central China.Geol J, 55(1): 934–948

[28]

Chen S S, Fan W M, Shi R D, Gong X H, Wu K (2017). Removal of deep lithosphere in ancient continental collisional orogens: a case study from central Xizang, China.Geochem Geophys Geosyst, 18(3): 1225–1243

[29]

Chen X Q, Xing F C, Jiang S, Lu Y C, Liu Z R, Pan L, Hu H R (2021). Origin and formation model of Eocene dolomite in the upper Niubao Formation of the Lunpola Basin, Xizang Plateau.Interpretation (Tulsa), 9(3): SF11–SF22

[30]

Chen Y, Yi H S, Xia G Q, Yi F, Tang W Q, Li G J, Wu X H, Shi Y X (2022). The organic geochemical characteristics from the Palaeogene lacustrine source rock in the Nyima Basin, Central Xizang, and their geological significance.Geol J, 57(3): 1186–1207

[31]

ChiQ H (2007). Handbook of Applied Geochemical Element Abundance Data. Beijing: Geological Press

[32]

Condie K C (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales.Chem Geol, 104(1−4): 1–37

[33]

Cox R, Lowe D R, Cullers R L (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States.Geochim Cosmochim Acta, 59(14): 2919–2940

[34]

Crichton J G, Condie K C (1993). Trace elements as source indicators in cratonic sediments: a case study from the Early Proterozoic Libby Creek Group, southeastern Wyoming.J Geol, 101(3): 319–332

[35]

Cullers R L (2002). Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA.Chem Geol, 191(4): 305–327

[36]

Cullers R L, Podkovyrov V N (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling.Precambrian Res, 104(1−2): 77–93

[37]

Currie B S, Polissar P J, Rowley D B, Ingalls M, Li S, Olack G, Freeman K H (2016). Multiproxy paleoaltimetry of the late Oligocene-Pliocene Oiyug basin, southern Xizang.Am J Sci, 316(5): 401–436

[38]

Currie B S, Rowley D B, Tabor N J (2005). Middle Miocene paleoaltimetry of southern Xizang: implications for the role of mantle thickening and delamination in the Himalayan orogen.Geology, 33(3): 181–184

[39]

DeCelles P G, Kapp P, Ding L, Gehrels G E (2007a). Late Cretaceous to middle Tertiary basin evolution in the central Xizang Plateau: changing environments in response to tectonic partitioning, aridification, and regional elevation gain.Geol Soc Am Bull, 119(5−6): 654–680

[40]

DeCelles P G, Quade J, Kapp P, Fan M, Dettman D L, Ding L (2007b). High and dry in central Xizang during the Late Oligocene.Earth Planet Sci Lett, 253(3−4): 389–401

[41]

Del Rio C, Wang T X, Wu F X, Liang X Q, Spicer T E, Zhou Z K, Su T (2020). Fossil record of Ceratophyllum aff. muricatum Cham. (Ceratophyllaceae) from the middle Eocene of central Xizang Plateau, China.Rev Palaeobot Palynol, 281: 104284

[42]

Deng T, Ding L (2015). Paleoaltimetry reconstructions of the Xizang Plateau: progress and contradictions.Natl Sci Rev, 2(4): 417–437

[43]

Deng T, Wang S Q, Xie G P, Li Q, Hou S K, Sun B Y (2012). A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Xizang, and its relevance to age and paleo-altimetry.Chin Sci Bull, 57(2−3): 261–269

[44]

Ding L, Kapp P, Cai F L, Garzione C N, Xiong Z Y, Wang H Q, Wang C (2022). Timing and mechanisms of Xizang Plateau uplift.Nat Rev Earth Environ, 3(10): 652–667

[45]

Ding L, Xu Q, Yue Y H, Wang H Q, Cai F L, Li S (2014). The andean-type gangdese mountains: paleoelevation record from the paleocene-eocene Linzhou Basin.Earth Planet Sci Lett, 392: 250–264

[46]

Donaldson D G, Webb A A, Menold C A, Kylander-Clark A R, Hacker B R (2013). Petrochronology of Himalayan ultrahigh-pressure eclogite.Geology, 41(8): 835–838

[47]

Duddy L R (1980). Redistribution and fractionation of rare-earth and other elements in a weathering profile.Chem Geol, 30(4): 363–381

[48]

Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S, Fang X (2007). Xizang plateau aridification linked to global cooling at the Eocene–Oligocene transition.Nature, 445(7128): 635–638

[49]

Fang X M, Dupont-Nivet G, Wang C S, Song C H, Meng Q Q, Zhang W L, Nie J S, Zhang T, Mao Z Q, Chen Y (2020). Revised chronology of central Xizang uplift (Lunpola Basin).Sci Adv, 6(50): eaba7298

[50]

Fedo C M, Wayne Nesbitt H, Young G M (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance.Geology, 23(10): 921–924

[51]

Feng W, Meng Q, Song C, Fang X, Zhuang G, He P, Yang S, Zhang J, Chen Y, Zhang Y (2023). Constraints on the timing of the India‐Asia collision and unroofing history of the Himalayan orogen using detrital zircon U‐Pb‐Hf and whole‐rock Sr‐Nd isotopes in Cretaceous‐Miocene Lesser Himalayan sedimentary rocks.Basin Res, 35(3): 949–977

[52]

Floyd P A, Leveridge B E (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones.J Geol Soc London, 144(4): 531–542

[53]

Fu X G, Wang J, Chen W B, Feng X L, Wang D, Song C Y, Zeng S Q (2016). Elemental geochemistry of the early Jurassic black shales in the Qiangtang Basin, eastern Tethys: constraints for palaeoenvironment conditions.Geol J, 51(3): 443–454

[54]

Fu X G, Wang J, Feng X L, Chen W B, Wang D, Song C, Zeng S Q (2018). Mineralogical compositions and elemental enrichment of shales in lacustrine rift basin: a case study in the Cenozoic Lunpola Basin, central Xizang.Geol J, 53(2): 439–457

[55]

Gaillardet J, Dupré B, Allègre C J (1999). Geochemistry of large river suspended sediments: silicate weathering or recycling tracer.Geochim Cosmochim Acta, 63(23−24): 4037–4051

[56]

Gallala W, Gaied M E, Montacer M (2009). Detrital mode, mineralogy and geochemistry of the Sidi Aïch Formation (Early Cretaceous) in central and southwestern Tunisia: implications for provenance, tectonic setting and paleoenvironment.J Afr Earth Sci, 53(4−5): 159–170

[57]

Garzanti E, Padoan M, Setti M, Najman Y, Peruta L, Villa I M (2013). Weathering geochemistry and Sr‐Nd fingerprints of equatorial upper Nile and Congo muds.Geochem Geophys Geosyst, 14(2): 292–316

[58]

Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble E A, Schrag D, Eiler J M (2006). 13C–18O bonds in carbonate minerals: a new kind of paleothermometer.Geochim Cosmochim Acta, 70(6): 1439–1456

[59]

Ghosh S, Sarkar S (2010). Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: clues for provenance.Chem Geol, 277(1−2): 78–100

[60]

Girty G H, Hanson A D, Yoshinobu A S, Knaack C, Johnson D (1993). Provenance of Paleozoic mudstones in a contact metamorphic aureole determined by rare earth element, Th, and Sc analyses, Sierra Nevada, California.Geology, 21(4): 363–366

[61]

Gu X X, Liu J M, Zheng M H, Tang J X, Qi L (2002). Provenance and tectonic setting of the Proterozoic turbidites in Hunan, south China: geochemical evidence.J Sediment Res, 72(3): 393–407

[62]

Han X, Dai J G, Lin J, Xu S, Liu B, Hu T, Zhang C, Wang C S (2022). An Oligocene-Miocene intermontane narrow lowland in the central Xizang Plateau: insights from provenance analysis and palynological record of a Cenozoic sedimentary succession.J Asian Earth Sci, 240: 105438

[63]

Han Z P, Sinclair H D, Li Y L, Wang C S, Tao Z, Qian X Y, Ning Z J, Zhang J W, Wen Y X, Lin J, Zhang B S, Xu M, Dai J, Zhou A, Liang H, Cao S (2019). Internal drainage has sustained low‐relief Xizang landscapes since the early Miocene.Geophys Res Lett, 46(15): 8741–8752

[64]

Hayashi K I, Fujisawa H, Holland H D, Ohmoto H (1997). Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada.Geochim Cosmochim Acta, 61(19): 4115–4137

[65]

He H Y, Sun J M, Li Q L, Zhu R X (2012). New age determination of the Cenozoic Lunpola basin, central Xizang.Geol Mag, 149(1): 141–145

[66]

Hu P Y, Zhai Q G, Jahn B M, Wang J, Li C, Chung S L, Lee H Y, Tang S H (2017). Late Early Cretaceous magmatic rocks (118–113 Ma) in the middle segment of the Bangong–Nujiang suture zone, Xizang Plateau: evidence of lithospheric delamination.Gondwana Res, 44: 116–138

[67]

Hu Z, Zhang W, Liu Y, Gao S, Li M, Zong K, Chen H, Hu S (2015). “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis.Anal Chem, 87(2): 1152–1157

[68]

Ingalls M, Rowley D B, Currie B S, Colman A S (2020). Reconsidering the uplift history and peneplanation of the northern Lhasa terrane, Xizang.Am J Sci, 320(6): 479–532

[69]

Jia G D, Bai Y, Ma Y J, Sun J M, Peng P A (2015). Paleoelevation of Xizang Lunpola basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes.Global Planet Change, 126: 14–22

[70]

Jia J L, Liu Z J, Bechtel A, Strobl S A, Sun P C (2013). Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China).Int J Earth Sci, 102(6): 1717–1734

[71]

Jia L B, Su T, Huang Y J, Wu F X, Deng T, Zhou Z K (2019). First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Xizang Plateau: implications for morphological evolution and biogeography.J Syst Evol, 57(2): 94–104

[72]

Jiang H, Su T, Wong W O, Wu F X, Huang J, Shi G (2019). Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Xizang and its implication for early diversification of the genus.J Asian Earth Sci, 175: 99–108

[73]

Jones B, Manning D A (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones.Chem Geol, 111(1−4): 111–129

[74]

Kapp P, DeCelles P G (2019). Mesozoic-Cenozoic geological evolution of the Himalayan-Xizang orogen and working tectonic hypotheses.Am J Sci, 319(3): 159–254

[75]

Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding L (2007). Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Xizang.Geol Soc Am Bull, 119(7−8): 917–933

[76]

Kasanzu C, Maboko M A, Manya S (2008). Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: implications for provenance and source rock weathering.Precambrian Res, 164(3−4): 201–213

[77]

Kirubakaran N, Sridharan M, Senthil Nathan D, Rajamanickam M, Harikrishnan S (2023). Geochemical and sedimentological signatures of Ariyankuppam and Chunnambar Estuarine Sediments, Pondicherry, India: implications on weathering and provenance.J Geol Soc India, 99(9): 1275–1284

[78]

Kong X, Mi W T, Zhu L D, Yang W G (2019). Zircon U-Pb chronology and provenance of the Paleogene sandstones in the Nima Basin, Xizang: implication for coeval paleogeography.Arab J Geosci, 12: 1–17

[79]

Lee H Y, Chung S L, Ji J, Qian Q, Gallet S, Lo C H, Lee T Y, Zhang Q (2012). Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Xizang.J Asian Earth Sci, 53: 96–114

[80]

LermanA (1989). Lakes Chemistry and Geology Physics. Texas: Geological Press

[81]

Lézin C, Andreu B, Pellenard P, Bouchez J L, Emmanuel L, Fauré P, Landrein P (2013). Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe.Chem Geol, 341: 1–15

[82]

Li C, Zhao Z B, Lu H J, Li H B (2022c). Late Mesozoic-Cenozoic multistage exhumation of the central Bangong-Nujiang suture, central Xizang.Tectonophysics, 827: 229268

[83]

Li L, Lu H J, Garzione C, Fan M J (2022b). Cenozoic paleoelevation history of the Lunpola Basin in Central Xizang: new evidence from volcanic glass hydrogen isotopes and a critical review.Earth Sci Rev, 231: 104068

[84]

Li X L, Zhang X, Lin C M, Huang S Y, Li X (2022a). Overview of the application and prospect of common chemical weathering indices.Geol J China U, 28(1): 51

[85]

Li Y L, He J, Han Z P, Wang C S, Ma P F, Zhou A, Liu S A, Xu M (2016). Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Xizang, and their implications for the Bangong–Nujiang Ocean subduction.Lithos, 245: 34–46

[86]

Li Y L, He J, Wang C S, Santosh M, Dai J G, Zhang Y X, Wei Y S, Wang J G (2013). Late Cretaceous K-rich magmatism in central Xizang: evidence for early elevation of the Xizang plateau.Lithos, 160–161: 1–3

[87]

Li Y L, Wang C S, Dai J G, Xu G Q, Hou Y L, Li X H (2015). Propagation of the deformation and growth of the Xizang-Himalayan orogen: a review.Earth Sci Rev, 143: 36–61

[88]

Liang J L, Tang D Z, Xu H, Tao S, Li C C, Gou M F (2014). Formation conditions of Jimusaer oil shale at the northern foot of Bogda Mountain, China.Oil Shale, 31(1): 19

[89]

Lin C M, Zhang X, Zhao X P, Li X, Huang S Y, Jiang K X (2021). Review of laboratory research methods for sedimentary petrology.Journal of Palaeogeography (Chinese Ed), 23(2): 223–244

[90]

Lin J, Liu Y, Yang Y, Hu Z (2016). Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios.Solid Earth Sci, 1(1): 5–27

[91]

Liu D, Shi R, Ding L, Huang Q, Zhang X, Yue Y, Zhang L (2017). Zircon U–Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Xizang: implications for the subduction of the Bangong–Nujiang Tethyan Ocean.Gondwana Res, 41: 157–172

[92]

Liu J, Su T, Spicer R A, Tang H, Wu F X, Srivastava G, Spicer T, Van Do T, Deng T, Zhou Z K (2019). Biotic interchange through lowlands of Xizang Plateau suture zones during Paleogene.Palaeogeogr Palaeoclimatol Palaeoecol, 524: 33–40

[93]

Liu X, Gao R, Guo X, Ding L (2023). Detrital zircon U-Pb geochronology of the Lunpola basin strata constrains the Cenozoic tectonic evolution of central Xizang.Gondwana Res, 113: 179–193

[94]

Lu L, Jin X, Yan L, Li W, Wei T, Shen Y (2024). Early uplift and exhumation of the Tanggula granitoid pluton since the Late Cretaceous: implications for the stepwise topographic growth model in the eastern Qiangtang terrane.Geol Soc Am Bull, 147–148: 22

[95]

Ma P F, Wang L C, Wang C S, Wu X H, Wei Y S (2015). Organic-matter accumulation of the lacustrine Lunpola oil shale, central Xizang Plateau: controlled by the paleoclimate, provenance, and drainage system.Int J Coal Geol, 147: 58–70

[96]

MadhavarajuJ (2015). Geochemistry of late Cretaceous sedimentary rocks of the Cauvery Basin, south India: constraints on paleoweathering, provenance, and end Cretaceous environments. In: Ramkumar M, ed. Chemostratigraphy. Netherlands: Elsevier Science, 185–214

[97]

Madukwe H Y, Ayodele S O, Akinyemi S A, Adebayo O F (2016). Classification, maturity, provenance, tectonic setting, and source-area weathering of Ipole and Erin Ijesa stream sediments, south west Nigeria.Intern J Adv Sci Techn Res, 6(1): 232–255

[98]

Mao Z Q, Meng Q Q, Fang X M, Zhang T, Wu F L, Yang Y, Zhang W L, Zan J B, Tan M Q (2019). Recognition of tuffs in the middle-upper Dingqinghu Fm., Lunpola Basin, central Xizang Plateau: constraints on stratigraphic age and implications for paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol, 525: 44–56

[99]

McLennan S M, Hemming S R, Taylor S R, Eriksson K A (1995). Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America.Geochim Cosmochim Acta, 59(6): 1153–1177

[100]

McLennanS M, Hemming S, McDanielD K, HansonG N (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Special Papers-Geological Society of America, 21–21

[101]

McLennan S M, Taylor S R, Eriksson K A (1983). Geochemistry of Archean shales from the Pilbara Supergroup, western Australia.Geochim Cosmochim Acta, 47(7): 1211–1222

[102]

McLennanS M, TaylorS R, HemmingS R (2006). Composition, Differentiation, and Evolution of Continental Crust: Constraints from Sedimentary Rocks and Heat Flow. Cambridge, UK: Cambridge University Press

[103]

Meng Q T, Liu Z J, Bruch A A, Liu R, Hu F (2012). Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China.J Asian Earth Sci, 45: 95–105

[104]

Mi W T, Yang W G, Zhu L D, Wu C G, Chen A Q (2018). Provenance of paleogene sediments in the south depression of Nima Basin, central Xizang and its geological implications.Geotectonica et Metallogenia, 42(1): 16

[105]

Michalopoulos P, Aller R C (1995). Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles.Science, 270(5236): 614–617

[106]

Molnar P, Boos W R, Battisti D S (2010). Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Xizang Plateau.Annu Rev Earth Planet Sci, 38(1): 77–102

[107]

Molnar P, England P, Martinod J (1993). Mantle dynamics, uplift of the Xizang Plateau, and the Indian monsoon.Rev Geophys, 31(4): 357–396

[108]

Moradi A V, Sarı A, Akkaya P (2016). Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: implications for paleoclimate conditions, source–area weathering, provenance and tectonic setting.Sediment Geol, 341: 289–303

[109]

Nesbitt H W (1979). Mobility and fractionation of rare earth elements during weathering of a granodiorite.Nature, 279(5710): 206–210

[110]

Nesbitt H W, Markovics G (1997). Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments.Geochim Cosmochim Acta, 61(8): 1653–1670

[111]

Nesbitt H, Young G M (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.Nature, 299(5885): 715–717

[112]

Potter P E (1978). Petrology and chemistry of modern big river sands.J Geol, 86(4): 423–449

[113]

Qiu X W, Liu C Y, Wang F F, Deng Y, Mao G Z (2015). Trace and rare earth element geochemistry of the Upper Triassic mudstones in the southern Ordos Basin, central China.Geol J, 50(4): 399–413

[114]

Ramos-Vázquez M A, Armstrong-Altrin J S (2019). Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico.Mar Pet Geol, 110: 650–675

[115]

Rasmussen C, Brantley S, Richter D D, Blum A, Dixon J, White A F (2011). Strong climate and tectonic control on plagioclase weathering in granitic terrain.Earth Planet Sci Lett, 301(3−4): 521–530

[116]

Raymo M E, Ruddiman W F (1992). Tectonic forcing of late Cenozoic climate.Nature, 359(6391): 117–122

[117]

Roddaz M, Viers J, Brusset S, Baby P, Boucayrand C, Hérail G (2006). Controls on weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments.Chem Geol, 226(1−2): 31–65

[118]

Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding L, Heizler M (2012). Thermochronologic evidence for plateau formation in central Xizang by 45 Ma.Geology, 40(2): 187–190

[119]

Roser B P, Cooper R A, Nathan S, Tulloch A J (1996). Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand.N Z J Geol Geophys, 39(1): 1–16

[120]

Roser B P, Korsch R J (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data.Chem Geol, 67(1−2): 119–139

[121]

Ross D J, Bustin R M (2009). Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin.Chem Geol, 260(1−2): 1–19

[122]

Rowley D B, Currie B S (2006). Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Xizang.Nature, 439(7077): 677–681

[123]

RowleyD B, Ingalls M, ColmanA S, CurrieB, LiS, OlackG, Lin D (2015). ~55 Ma aged high topography of the Lhasa Block From Stable and clumped isotope paleoaltimetry: implications for ~50±25% crustal mass deficit in the India-Asia collisional system. In AGU Fall Meeting Abstracts, Vol. 2015, T12B–06

[124]

Roy P D, Caballero M, Lozano R, Smykatz-Kloss W (2008). Geochemistry of late quaternary sediments from Tecocomulco lake, central Mexico: implication to chemical weathering and provenance.Chem Erde, 68(4): 383–393

[125]

Shekhar S, Shukla A, Kumar P (2018). Geochemical and petrographic interpretation of Sandhan Formation: an insight into provenance, tectonics and paleoclimatic conditions.Earth Sci India, 11(3): 11

[126]

Singh P (2009). Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes.Chem Geol, 266(3−4): 242–255

[127]

Snell K E, Thrasher B L, Eiler J M, Koch P L, Sloan L C, Tabor N J (2013). Hot summers in the Bighorn Basin during the early Paleogene.Geology, 41(1): 55–58

[128]

Spicer R A, Su T, Valdes P J, Farnsworth A, Wu F X, Shi G, Spicer T E, Zhou Z (2021b). The topographic evolution of the Xizang Region as revealed by palaeontology.Palaeobiodivers Palaeoenviron, 101(1): 213–243

[129]

Spicer R A, Su T, Valdes P J, Farnsworth A, Wu F X, Shi G, Spicer T E, Zhou Z (2021a). Why ‘the uplift of the Xizang Plateau’ is a myth.Nat Sci Rev, 8(1): 091

[130]

Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K (2019). No high Xizang Plateau until the Neogene.Sci Adv, 5(3): eaav2189

[131]

Su T, Spicer R A, Wu F X, Farnsworth A, Huang J, Del Rio C, Deng T, Ding L, Deng W Y D, Huang Y J, Hughes A, Jia L B, Jin J H, Li S F, Liang S Q, Liu J, Liu X Y, Sherlock S, Spicer T, Srivastava G, Tang H, Valdes P, Wang T X, Widdowson M, Wu M X, Xing Y W, Xu C L, Yang J, Zhang C, Zhang S T, Zhang X W, Zhao F, Zhou Z K (2020). A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Xizang.Proc Natl Acad Sci USA, 117(52): 32989–32995

[132]

Sun J M, Xu Q H, Liu W M, Zhang Z Q, Xue L, Zhao P (2014). Palynological evidence for the latest Oligocene−early Miocene paleoelevation estimate in the Lunpola Basin, central Xizang.Palaeogeogr Palaeoclimatol Palaeoecol, 399: 21–30

[133]

Sun S, Chen A Q, Chen H D, Hou M C, Yang S, Xu S L, Wang F, Huang Z F, Ogg J G (2022). Early Permian chemical weathering indices and paleoclimate transition linked to the end of the coal-forming episode, Ordos Basin, North China Craton.Palaeogeogr Palaeoclimatol Palaeoecol, 585: 110743

[134]

Tang H, Liu J, Wu F X, Spicer T, Spicer R A, Deng W Y D, Xu C L, Zhao F, Huang J, Li S F, Su T, Zhou Z K (2019). Extinct genus Lagokarpos reveals a biogeographic connection between Xizang and other regions in the Northern Hemisphere during the Paleogene.J Syst Evol, 57(6): 670–677

[135]

TaylorS R, McLennan S M (1985). The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific, 312

[136]

Tribovillard N, Algeo T J, Lyons T, Riboulleau A (2006). Trace metals as paleoredox and paleoproductivity proxies: an update.Chem Geol, 232(1−2): 12–32

[137]

Verma S P, Armstrong-Altrin J S (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins.Chem Geol, 355: 117–133

[138]

Verma S P, Armstrong-Altrin J S (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings.Sediment Geol, 332: 1–12

[139]

Vital H, Stattegger K (2000). Major and trace elements of stream sediments from the lowermost Amazon River.Chem Geol, 168(1−2): 151–168

[140]

Wang C S, Dai J G, Zhao X X, Li Y L, Graham S A, He D F, Ran B, Meng J (2014a). Outward-growth of the Xizang Plateau during the Cenozoic: a review.Tectonophysics, 621: 1–43

[141]

Wang H, Dutta S, Kelly R S, Rudra A, Li S, Zhang Q Q, Zhang Q Q, Wu Y X, Cao M Z, Wang B, Li J G, Zhang H C (2018b). Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Xizang.Palaeoworld (Amst), 27(4): 506–513

[142]

Wang P, Du Y, Yu W, Algeo T J, Zhou Q, Xu Y, Qi L, Yuan L, Pan W (2020). The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history.Earth Sci Rev, 201: 103032

[143]

Wang Q, Zhu D C, Zhao Z D, Liu S A, Chung S L, Li S M, Liu D, Dai J G, Wang L Q, Mo X X (2014b). Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Xizang: products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone.Lithos, 198–199: 24–37

[144]

Wang S F, Ch Y, Yi H S, Tang W Q, Zhou Y X, Cui R L, Wu X H, Bai R, Yang Y (2023). The characteristics of n-alkanes from the Palaeogene lacustrine oil shale in the Kanggale area, Nyima Basin, and their paleoenvironment and Paleoclimate significance.Sediment Geol Tethyan Geol, 43(3): 542–554

[145]

Wang Z W, Wang J, Fu X G, Feng X L, Wang D, Song C Y, Chen W B, Zeng S Q (2017a). Petrography and geochemistry of upper Triassic sandstones from the Tumengela Formation in the Woruo Mountain area, North Qiangtang Basin, Xizang: implications for provenance, source area weathering, and tectonic setting.Isl Arc, 26(4): e12191

[146]

Wang Z W, Wang J, Fu X G, Zhan W Z, Armstrong-Altrin J S, Yu F, Feng X L, Song C Y, Zeng S Q (2018a). Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Xizang: implications for paleoenvironment, provenance, and tectonic setting.J Asian Earth Sci, 160: 118–135

[147]

Wang Z W, Wang J, Fu X G, Zhan W Z, Yu F, Feng X, Song C L, Chen W B, Zeng S Q (2017b). Organic material accumulation of Carnian mudstones in the North Qiangtang Depression, eastern Tethys: controlled by the paleoclimate, paleoenvironment, and provenance.Mar Pet Geol, 88: 440–457

[148]

Wei Y, Zhang K X, Garzione C N, Xu Y D, Song B W, Ji J L (2016). Low palaeoelevation of the northern Lhasa terrane during late Eocene: fossil foraminifera and stable isotope evidence from the Gerze Basin.Sci Rep, 6(1): 27508

[149]

Weltje G J, von Eynatten H (2004). Quantitative provenance analysis of sediments: review and outlook.Sediment Geol, 171(1−4): 1–11

[150]

Wesolowski D J (1992). Aluminum speciation and equilibria in aqueous solution: I. The solubility of gibbsite in the system Na-K-Cl-OH-Al (OH)4 from 0 to 100 °C.Geochim Cosmochim Acta, 56(3): 1065–1091

[151]

West A J (2012). Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks.Geology, 40(9): 811–814

[152]

Wronkiewicz D J, Condie K C (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance.Geochim Cosmochim Acta, 51(9): 2401–2416

[153]

Wu F X, Miao D S, Chang M M, Shi G L, Wang N (2017). Fossil climbing perch and associated plant megafossils indicate a warm and wet central Xizang during the late Oligocene.Sci Rep, 7(1): 878

[154]

Xia G Q, Zheng D R, Krieg-Jacquier R, Fan Q S, Chen Y, Nel A (2022). The oldest-known Lestidae (Odonata) from the late Eocene of Xizang: palaeoclimatic implications.Geol Mag, 159(4): 511–518

[155]

Xiong Z Y, Liu X H, Ding L, Farnsworth A, Spicer R A, Xu Q, Valdes P, He S L, Zeng D, Wang C, Li Z Y, Guo X D, Su T, Zhao C Y, Wang H Q, Yue Y H (2022). The rise and demise of the Paleogene Central Xizang Valley.Sci Adv, 8(6): 0944

[156]

Xu X L, Shao L Y (2018). Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance.J Palaeogeogr (Chn Ed), 020(003): 515–522

[157]

Xu X T, Szwedo J, Huang D Y, Deng W Y D, Obroślak M, Wu F X, Su T (2022). A new genus of spittlebugs (hemiptera, cercopidae) from the eocene of central Xizang Plateau.Insects, 13(9): 770

[158]

Xue W W, Najman Y, Hu X M, Persano C, Stuart F M, Li W, Ma A L, Wang Y (2022). Late Cretaceous to Late Eocene exhumation in the Nima area, central Xizang: implications for development of low relief topography of the Xizang Plateau.Tectonics, 41(3): e2021TC006989

[159]

Yan H, Long X, Wang X C, Li J, Wang Q, Yuan C, Sun M (2016). Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Ando area, central Xizang: evidence for a slab roll-back of the Bangong-Nujiang Ocean.Lithos, 264: 315–328

[160]

Yang J H, Cawood P A, Du Y S, Li W Q, Yan J X (2016). Reconstructing Early Permian tropical climates from chemical weathering indices.Geol Soc Am Bull, 128(5−6): 739–751

[161]

Yang Y B, Nie J S, Miao Y F, Wan S M, Jonell T N (2022). Xizang Plateau uplift and environmental impacts: new progress and perspectives.Front in Earth Sci, 10: 1020354

[162]

Zeng S Q, Wang J, Chen W B, Fu X G, Feng X L, Song C Y, Wang D, Sun W (2020). Geochemical constraints on the provenance, paleoenvironment, and tectonic setting of late Triassic mudstones in the western Qiangtang Basin, Xizang.Lithosphere, 12(5): 631–648

[163]

Zhang X, Gélin U, Spicer R A, Wu F, Farnsworth A, Chen P, Del Rio C, Li S, Liu J, Huang J, Spicer T E, Tomlinson K W, Valdes P J, Xu X, Zhang S, Deng T, Zhou Z, Su T (2022). Rapid Eocene diversification of spiny plants in subtropical woodlands of central Xizang.Nat Commun, 13(1): 3787

[164]

Zhou L, Friis H, Poulsen M L K (2015). Geochemical evaluation of the late Paleocene and early Eocene shales in Siri Canyon, Danish-Norwegian Basin.Mar Pet Geol, 61: 111–122

[165]

Zhu D C, Wang Q, Cawood P A, Zhao Z D, Mo X X (2017). Raising the Gangdese mountains in southern Xizang.J Geophys Res Solid Earth, 122(1): 214–223

[166]

Zhu D C, Wang Q, Zhao Z D, Chung S L, Cawood P A, Niu Y L, Liu S A, Wu F Y, Mo X X (2015). Magmatic record of India-Asia collision.Sci Rep, 5(1): 14289

[167]

Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X (2013). The origin and pre-Cenozoic evolution of the Xizang Plateau.Gondwana Res, 23(4): 1429–1454

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5013KB)

1063

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/