
Geochemical characteristics of the late Eocene mudstones in the eastern Nima Basin, Xizang: implications for the paleoenvironment, provenance, and tectonic setting
Xinhang WANG, Siqi XIAO, Zhongpeng HAN, Yalin LI, Shuai LI, Jie DAI
Geochemical characteristics of the late Eocene mudstones in the eastern Nima Basin, Xizang: implications for the paleoenvironment, provenance, and tectonic setting
Paleoenvironmental reconstruction plays a pivotal role in providing insights into the uplift history of the Xizang Plateau during the Cenozoic. The Nima Basin, situated in the central Xizang Plateau, is crucial for studying the tectonic and geomorphic evolution of this region. The clastic composition and geochemical characteristics of the Niubao Formation hold considerable potential for unravelling the geological history and reconstructing depositional environments of central Xizang in the early Cenozoic. In this study, we present detailed geochemical characteristics to determine their provenance, paleoenvironmental conditions, and tectonic origins. The index of compositional variability (ICV > 1) of mudstones indicates that low compositional maturity sediments underwent weak sedimentary recycling. The chemical index of alteration (CIA: 59.8−72.9) reveals that parental rocks experienced a moderate chemical weathering degree. The paleoclimate indicators of the mudstones suggest an oxidizing and arid depositional environment, with a mean annual temperature (MAT) of 11.64°C ± 4.19°C. The geochemical evidence also demonstrates that the mudstones were derived from mixed felsic and intermediate igneous rocks that formed in a dominantly continental island arc tectonic setting. Similarities in the geochemical characteristics among the Niubao Formation and surrounding igneous rocks indicate that a continental-scale drainage system once drained westward in central Xizang. It is concluded that the central plateau experienced a cooler and drier climate coinciding with the presence of a large-scale drainage system during the late Eocene.
late Eocene / geochemistry / Nima Basin / mudstone / paleoenvironment
[1] |
Algeo T J, Maynard J B (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems.Chem Geol, 206(3−4): 289–318
CrossRef
Google scholar
|
[2] |
Amorosi A, Centineo M C, Dinelli E, Lucchini F, Tateo F (2002). Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain.Sediment Geol, 151(3−4): 273–292
CrossRef
Google scholar
|
[3] |
Amorosi A, Sammartino I, Dinelli E, Campo B, Guercia T, Trincardi F, Pellegrini C (2022). Provenance and sediment dispersal in the Po-Adriatic source-to-sink system unraveled by bulk-sediment geochemistry and its linkage to catchment geology.Earth Sci Rev, 234: 104202
CrossRef
Google scholar
|
[4] |
Anderson S P, Dietrich W E, Brimhall G H Jr (2002). Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment.Geol Soc Am Bull, 114(9): 1143–1158
CrossRef
Google scholar
|
[5] |
Armitage J J, Duller R A, Whittaker A C, Allen P A (2011). Transformation of tectonic and climatic signals from source to sedimentary archive.Nat Geosci, 4(4): 231–235
CrossRef
Google scholar
|
[6] |
Armstrong-Altrin J S, Lee Y I, Kasper-Zubillaga J J, Trejo-Ramírez E (2017). Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting.Geol J, 52(4): 559–582
CrossRef
Google scholar
|
[7] |
Armstrong-Altrin J S, Lee Y I, Verma S P, Worden R H (2009). Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam Formation, southern India: implications for paleoenvironment and diagenesis.Chem Erde, 69(1): 45–60
CrossRef
Google scholar
|
[8] |
Armstrong-Altrin J S, Machain-Castillo M L, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza J A, Ruíz-Fernández A C (2015a). Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis.Cont Shelf Res, 95: 15–26
CrossRef
Google scholar
|
[9] |
Armstrong-Altrin J S, Nagarajan R, Balaram V, Natalhy-Pineda O (2015b). Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting.J S Am Earth Sci, 64: 199–216
CrossRef
Google scholar
|
[10] |
Armstrong-Altrin J S, Nagarajan R, Madhavaraju J, Rosalez-Hoz L, Lee Y I, Balaram V, Cruz-Martínez A, Avila-Ramírez G (2013). Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: implications for source-area weathering, provenance, and tectonic setting.C R Geosci, 345(4): 185–202
CrossRef
Google scholar
|
[11] |
Asiedu D K, Suzuki S, Nogami K, Shibata T (2000). Geochemistry of Lower Cretaceous sediments, inner zone of Southwest Japan: constraints on provenance and tectonic environment.Geochem J, 34(2): 155–173
CrossRef
Google scholar
|
[12] |
Ayers J C, Watson E B (1993). Rutile solubility and mobility in supercritical aqueous fluids.Contrib Mineral Petrol, 114(3): 321–330
CrossRef
Google scholar
|
[13] |
Ayinla H A, Abdullah W H, Makeen Y M, Abubakar M B, Jauro A, Sarki Yandoka B M, Zainal Abidin N S (2017). Petrographic and geochemical characterization of the Upper Cretaceous coal and mudstones of Gombe Formation, Gongola sub-basin, northern Benue trough Nigeria: implication for organic matter preservation, paleodepositional environment and tectonic settings.Int J Coal Geol, 180: 67–82
CrossRef
Google scholar
|
[14] |
Bai Y Y, Liu Z J, Sun P C, Liu R, Hu X F, Zhao H Q, Xu Y B (2015). Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale-and coal-bearing layers of the Meihe Basin, Northeast China.J Asian Earth Sci, 97: 89–101
CrossRef
Google scholar
|
[15] |
Banerji U S, Dubey C P, Goswami V, Joshi K B (2022). Geochemical indicators in provenance estimation. In: Geochemical Treasures and Petrogenetic Processes. Singapore: Springer Nature Singapore, 95–121
|
[16] |
Barshad I (1966). Factors affecting the frequency distribution of clay minerals in soils.Clays and Clay Minerals, 1966: 207
CrossRef
Google scholar
|
[17] |
Basu A, Bickford M E, Deasy R (2016). Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: a dissent.Sediment Geol, 336: 26–35
CrossRef
Google scholar
|
[18] |
Bhatia M R (1983). Plate tectonics and geochemical composition of sandstones.J Geol, 91(6): 611–627
CrossRef
Google scholar
|
[19] |
Bhatia M R, Crook K A (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins.Contrib Mineral Petrol, 92(2): 181–193
CrossRef
Google scholar
|
[20] |
Bi W J, Li Y L, Kamp P J J, Xu G Q, Zhang J W, Han Z P, Du L T, Wang C S, He H Y, Xu T K, Ma Z N (2023). Cretaceous–Cenozoic cooling history of the Qiangtang terrane and implications for Central Xizang formation.Geol Soc Am Bull, 135(5−6): 1587–1601
|
[21] |
Bock B, McLennan S M, Hanson G N (1998). Geochemistry and provenance of the middle Ordovician Austin Glen member (Normanskill formation) and the Taconian orogeny in New England.Sedimentology, 45(4): 635–655
CrossRef
Google scholar
|
[22] |
Botsyun S, Sepulchre P, Donnadieu Y, Risi C, Licht A, Caves Rugenstein J K (2019). Revised paleoaltimetry data show low Xizang Plateau elevation during the Eocene.Science, 363(6430): eaaq1436
CrossRef
Google scholar
|
[23] |
Cao H S, Guo W, Shan X L, Ma L, Sun P C (2015). Paleolimnological environments and organic accumulation of the Nenjiang Formation in the Southeastern Songliao Basin, China.Oil Shale, 32(1): 5–24
CrossRef
Google scholar
|
[24] |
Caracciolo L (2020). Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: review, application and future development.Earth Sci Rev, 209: 103226
CrossRef
Google scholar
|
[25] |
Cerling T E, Harris J M, MacFadden B J, Leakey M G, Quade J, Eisenmann V, Ehleringer J R (1997). Global vegetation change through the Miocene/Pliocene boundary.Nature, 389(6647): 153–158
CrossRef
Google scholar
|
[26] |
Chapman J B, Kapp P (2017). Xizang magmatism database.Geochem Geophys Geosyst, 18(11): 4229–4234
CrossRef
Google scholar
|
[27] |
Chen L, Chen X H, Zhang B M, Zhang G T, Li H, Lin W B, Chen P, Hu H Y, Tian W (2020). Provenance and palaeoenvironment of Upper Devonian Shetianqiao Formation mudstones in Shaoyang Sag, Xiangzhong Depression, Central China.Geol J, 55(1): 934–948
CrossRef
Google scholar
|
[28] |
Chen S S, Fan W M, Shi R D, Gong X H, Wu K (2017). Removal of deep lithosphere in ancient continental collisional orogens: a case study from central Xizang, China.Geochem Geophys Geosyst, 18(3): 1225–1243
CrossRef
Google scholar
|
[29] |
Chen X Q, Xing F C, Jiang S, Lu Y C, Liu Z R, Pan L, Hu H R (2021). Origin and formation model of Eocene dolomite in the upper Niubao Formation of the Lunpola Basin, Xizang Plateau.Interpretation (Tulsa), 9(3): SF11–SF22
CrossRef
Google scholar
|
[30] |
Chen Y, Yi H S, Xia G Q, Yi F, Tang W Q, Li G J, Wu X H, Shi Y X (2022). The organic geochemical characteristics from the Palaeogene lacustrine source rock in the Nyima Basin, Central Xizang, and their geological significance.Geol J, 57(3): 1186–1207
CrossRef
Google scholar
|
[31] |
Chi Q H (2007). Handbook of Applied Geochemical Element Abundance Data. Beijing: Geological Press
|
[32] |
Condie K C (1993). Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales.Chem Geol, 104(1−4): 1–37
CrossRef
Google scholar
|
[33] |
Cox R, Lowe D R, Cullers R L (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States.Geochim Cosmochim Acta, 59(14): 2919–2940
CrossRef
Google scholar
|
[34] |
Crichton J G, Condie K C (1993). Trace elements as source indicators in cratonic sediments: a case study from the Early Proterozoic Libby Creek Group, southeastern Wyoming.J Geol, 101(3): 319–332
CrossRef
Google scholar
|
[35] |
Cullers R L (2002). Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA.Chem Geol, 191(4): 305–327
CrossRef
Google scholar
|
[36] |
Cullers R L, Podkovyrov V N (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling.Precambrian Res, 104(1−2): 77–93
CrossRef
Google scholar
|
[37] |
Currie B S, Polissar P J, Rowley D B, Ingalls M, Li S, Olack G, Freeman K H (2016). Multiproxy paleoaltimetry of the late Oligocene-Pliocene Oiyug basin, southern Xizang.Am J Sci, 316(5): 401–436
CrossRef
Google scholar
|
[38] |
Currie B S, Rowley D B, Tabor N J (2005). Middle Miocene paleoaltimetry of southern Xizang: implications for the role of mantle thickening and delamination in the Himalayan orogen.Geology, 33(3): 181–184
CrossRef
Google scholar
|
[39] |
DeCelles P G, Kapp P, Ding L, Gehrels G E (2007a). Late Cretaceous to middle Tertiary basin evolution in the central Xizang Plateau: changing environments in response to tectonic partitioning, aridification, and regional elevation gain.Geol Soc Am Bull, 119(5−6): 654–680
CrossRef
Google scholar
|
[40] |
DeCelles P G, Quade J, Kapp P, Fan M, Dettman D L, Ding L (2007b). High and dry in central Xizang during the Late Oligocene.Earth Planet Sci Lett, 253(3−4): 389–401
CrossRef
Google scholar
|
[41] |
Del Rio C, Wang T X, Wu F X, Liang X Q, Spicer T E, Zhou Z K, Su T (2020). Fossil record of Ceratophyllum aff. muricatum Cham. (Ceratophyllaceae) from the middle Eocene of central Xizang Plateau, China.Rev Palaeobot Palynol, 281: 104284
CrossRef
Google scholar
|
[42] |
Deng T, Ding L (2015). Paleoaltimetry reconstructions of the Xizang Plateau: progress and contradictions.Natl Sci Rev, 2(4): 417–437
CrossRef
Google scholar
|
[43] |
Deng T, Wang S Q, Xie G P, Li Q, Hou S K, Sun B Y (2012). A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Xizang, and its relevance to age and paleo-altimetry.Chin Sci Bull, 57(2−3): 261–269
CrossRef
Google scholar
|
[44] |
Ding L, Kapp P, Cai F L, Garzione C N, Xiong Z Y, Wang H Q, Wang C (2022). Timing and mechanisms of Xizang Plateau uplift.Nat Rev Earth Environ, 3(10): 652–667
CrossRef
Google scholar
|
[45] |
Ding L, Xu Q, Yue Y H, Wang H Q, Cai F L, Li S (2014). The andean-type gangdese mountains: paleoelevation record from the paleocene-eocene Linzhou Basin.Earth Planet Sci Lett, 392: 250–264
CrossRef
Google scholar
|
[46] |
Donaldson D G, Webb A A, Menold C A, Kylander-Clark A R, Hacker B R (2013). Petrochronology of Himalayan ultrahigh-pressure eclogite.Geology, 41(8): 835–838
CrossRef
Google scholar
|
[47] |
Duddy L R (1980). Redistribution and fractionation of rare-earth and other elements in a weathering profile.Chem Geol, 30(4): 363–381
CrossRef
Google scholar
|
[48] |
Dupont-Nivet G, Krijgsman W, Langereis C G, Abels H A, Dai S, Fang X (2007). Xizang plateau aridification linked to global cooling at the Eocene–Oligocene transition.Nature, 445(7128): 635–638
CrossRef
Google scholar
|
[49] |
Fang X M, Dupont-Nivet G, Wang C S, Song C H, Meng Q Q, Zhang W L, Nie J S, Zhang T, Mao Z Q, Chen Y (2020). Revised chronology of central Xizang uplift (Lunpola Basin).Sci Adv, 6(50): eaba7298
CrossRef
Google scholar
|
[50] |
Fedo C M, Wayne Nesbitt H, Young G M (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance.Geology, 23(10): 921–924
CrossRef
Google scholar
|
[51] |
Feng W, Meng Q, Song C, Fang X, Zhuang G, He P, Yang S, Zhang J, Chen Y, Zhang Y (2023). Constraints on the timing of the India‐Asia collision and unroofing history of the Himalayan orogen using detrital zircon U‐Pb‐Hf and whole‐rock Sr‐Nd isotopes in Cretaceous‐Miocene Lesser Himalayan sedimentary rocks.Basin Res, 35(3): 949–977
CrossRef
Google scholar
|
[52] |
Floyd P A, Leveridge B E (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones.J Geol Soc London, 144(4): 531–542
CrossRef
Google scholar
|
[53] |
Fu X G, Wang J, Chen W B, Feng X L, Wang D, Song C Y, Zeng S Q (2016). Elemental geochemistry of the early Jurassic black shales in the Qiangtang Basin, eastern Tethys: constraints for palaeoenvironment conditions.Geol J, 51(3): 443–454
CrossRef
Google scholar
|
[54] |
Fu X G, Wang J, Feng X L, Chen W B, Wang D, Song C, Zeng S Q (2018). Mineralogical compositions and elemental enrichment of shales in lacustrine rift basin: a case study in the Cenozoic Lunpola Basin, central Xizang.Geol J, 53(2): 439–457
CrossRef
Google scholar
|
[55] |
Gaillardet J, Dupré B, Allègre C J (1999). Geochemistry of large river suspended sediments: silicate weathering or recycling tracer.Geochim Cosmochim Acta, 63(23−24): 4037–4051
CrossRef
Google scholar
|
[56] |
Gallala W, Gaied M E, Montacer M (2009). Detrital mode, mineralogy and geochemistry of the Sidi Aïch Formation (Early Cretaceous) in central and southwestern Tunisia: implications for provenance, tectonic setting and paleoenvironment.J Afr Earth Sci, 53(4−5): 159–170
CrossRef
Google scholar
|
[57] |
Garzanti E, Padoan M, Setti M, Najman Y, Peruta L, Villa I M (2013). Weathering geochemistry and Sr‐Nd fingerprints of equatorial upper Nile and Congo muds.Geochem Geophys Geosyst, 14(2): 292–316
CrossRef
Google scholar
|
[58] |
Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble E A, Schrag D, Eiler J M (2006). 13C–18O bonds in carbonate minerals: a new kind of paleothermometer.Geochim Cosmochim Acta, 70(6): 1439–1456
CrossRef
Google scholar
|
[59] |
Ghosh S, Sarkar S (2010). Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: clues for provenance.Chem Geol, 277(1−2): 78–100
CrossRef
Google scholar
|
[60] |
Girty G H, Hanson A D, Yoshinobu A S, Knaack C, Johnson D (1993). Provenance of Paleozoic mudstones in a contact metamorphic aureole determined by rare earth element, Th, and Sc analyses, Sierra Nevada, California.Geology, 21(4): 363–366
CrossRef
Google scholar
|
[61] |
Gu X X, Liu J M, Zheng M H, Tang J X, Qi L (2002). Provenance and tectonic setting of the Proterozoic turbidites in Hunan, south China: geochemical evidence.J Sediment Res, 72(3): 393–407
CrossRef
Google scholar
|
[62] |
Han X, Dai J G, Lin J, Xu S, Liu B, Hu T, Zhang C, Wang C S (2022). An Oligocene-Miocene intermontane narrow lowland in the central Xizang Plateau: insights from provenance analysis and palynological record of a Cenozoic sedimentary succession.J Asian Earth Sci, 240: 105438
CrossRef
Google scholar
|
[63] |
Han Z P, Sinclair H D, Li Y L, Wang C S, Tao Z, Qian X Y, Ning Z J, Zhang J W, Wen Y X, Lin J, Zhang B S, Xu M, Dai J, Zhou A, Liang H, Cao S (2019). Internal drainage has sustained low‐relief Xizang landscapes since the early Miocene.Geophys Res Lett, 46(15): 8741–8752
CrossRef
Google scholar
|
[64] |
Hayashi K I, Fujisawa H, Holland H D, Ohmoto H (1997). Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada.Geochim Cosmochim Acta, 61(19): 4115–4137
CrossRef
Google scholar
|
[65] |
He H Y, Sun J M, Li Q L, Zhu R X (2012). New age determination of the Cenozoic Lunpola basin, central Xizang.Geol Mag, 149(1): 141–145
CrossRef
Google scholar
|
[66] |
Hu P Y, Zhai Q G, Jahn B M, Wang J, Li C, Chung S L, Lee H Y, Tang S H (2017). Late Early Cretaceous magmatic rocks (118–113 Ma) in the middle segment of the Bangong–Nujiang suture zone, Xizang Plateau: evidence of lithospheric delamination.Gondwana Res, 44: 116–138
CrossRef
Google scholar
|
[67] |
Hu Z, Zhang W, Liu Y, Gao S, Li M, Zong K, Chen H, Hu S (2015). “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis.Anal Chem, 87(2): 1152–1157
CrossRef
Google scholar
|
[68] |
Ingalls M, Rowley D B, Currie B S, Colman A S (2020). Reconsidering the uplift history and peneplanation of the northern Lhasa terrane, Xizang.Am J Sci, 320(6): 479–532
CrossRef
Google scholar
|
[69] |
Jia G D, Bai Y, Ma Y J, Sun J M, Peng P A (2015). Paleoelevation of Xizang Lunpola basin in the Oligocene-Miocene transition estimated from leaf wax lipid dual isotopes.Global Planet Change, 126: 14–22
CrossRef
Google scholar
|
[70] |
Jia J L, Liu Z J, Bechtel A, Strobl S A, Sun P C (2013). Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China).Int J Earth Sci, 102(6): 1717–1734
CrossRef
Google scholar
|
[71] |
Jia L B, Su T, Huang Y J, Wu F X, Deng T, Zhou Z K (2019). First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Xizang Plateau: implications for morphological evolution and biogeography.J Syst Evol, 57(2): 94–104
CrossRef
Google scholar
|
[72] |
Jiang H, Su T, Wong W O, Wu F X, Huang J, Shi G (2019). Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Xizang and its implication for early diversification of the genus.J Asian Earth Sci, 175: 99–108
CrossRef
Google scholar
|
[73] |
Jones B, Manning D A (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones.Chem Geol, 111(1−4): 111–129
CrossRef
Google scholar
|
[74] |
Kapp P, DeCelles P G (2019). Mesozoic-Cenozoic geological evolution of the Himalayan-Xizang orogen and working tectonic hypotheses.Am J Sci, 319(3): 159–254
CrossRef
Google scholar
|
[75] |
Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding L (2007). Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Xizang.Geol Soc Am Bull, 119(7−8): 917–933
CrossRef
Google scholar
|
[76] |
Kasanzu C, Maboko M A, Manya S (2008). Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: implications for provenance and source rock weathering.Precambrian Res, 164(3−4): 201–213
CrossRef
Google scholar
|
[77] |
Kirubakaran N, Sridharan M, Senthil Nathan D, Rajamanickam M, Harikrishnan S (2023). Geochemical and sedimentological signatures of Ariyankuppam and Chunnambar Estuarine Sediments, Pondicherry, India: implications on weathering and provenance.J Geol Soc India, 99(9): 1275–1284
CrossRef
Google scholar
|
[78] |
Kong X, Mi W T, Zhu L D, Yang W G (2019). Zircon U-Pb chronology and provenance of the Paleogene sandstones in the Nima Basin, Xizang: implication for coeval paleogeography.Arab J Geosci, 12: 1–17
CrossRef
Google scholar
|
[79] |
Lee H Y, Chung S L, Ji J, Qian Q, Gallet S, Lo C H, Lee T Y, Zhang Q (2012). Geochemical and Sr-Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Xizang.J Asian Earth Sci, 53: 96–114
CrossRef
Google scholar
|
[80] |
Lerman A (1989). Lakes Chemistry and Geology Physics. Texas: Geological Press
|
[81] |
Lézin C, Andreu B, Pellenard P, Bouchez J L, Emmanuel L, Fauré P, Landrein P (2013). Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe.Chem Geol, 341: 1–15
CrossRef
Google scholar
|
[82] |
Li C, Zhao Z B, Lu H J, Li H B (2022c). Late Mesozoic-Cenozoic multistage exhumation of the central Bangong-Nujiang suture, central Xizang.Tectonophysics, 827: 229268
CrossRef
Google scholar
|
[83] |
Li L, Lu H J, Garzione C, Fan M J (2022b). Cenozoic paleoelevation history of the Lunpola Basin in Central Xizang: new evidence from volcanic glass hydrogen isotopes and a critical review.Earth Sci Rev, 231: 104068
CrossRef
Google scholar
|
[84] |
Li X L, Zhang X, Lin C M, Huang S Y, Li X (2022a). Overview of the application and prospect of common chemical weathering indices.Geol J China U, 28(1): 51
|
[85] |
Li Y L, He J, Han Z P, Wang C S, Ma P F, Zhou A, Liu S A, Xu M (2016). Late Jurassic sodium-rich adakitic intrusive rocks in the southern Qiangtang terrane, central Xizang, and their implications for the Bangong–Nujiang Ocean subduction.Lithos, 245: 34–46
CrossRef
Google scholar
|
[86] |
Li Y L, He J, Wang C S, Santosh M, Dai J G, Zhang Y X, Wei Y S, Wang J G (2013). Late Cretaceous K-rich magmatism in central Xizang: evidence for early elevation of the Xizang plateau.Lithos, 160–161: 1–3
CrossRef
Google scholar
|
[87] |
Li Y L, Wang C S, Dai J G, Xu G Q, Hou Y L, Li X H (2015). Propagation of the deformation and growth of the Xizang-Himalayan orogen: a review.Earth Sci Rev, 143: 36–61
CrossRef
Google scholar
|
[88] |
Liang J L, Tang D Z, Xu H, Tao S, Li C C, Gou M F (2014). Formation conditions of Jimusaer oil shale at the northern foot of Bogda Mountain, China.Oil Shale, 31(1): 19
CrossRef
Google scholar
|
[89] |
Lin C M, Zhang X, Zhao X P, Li X, Huang S Y, Jiang K X (2021). Review of laboratory research methods for sedimentary petrology.Journal of Palaeogeography (Chinese Ed), 23(2): 223–244
|
[90] |
Lin J, Liu Y, Yang Y, Hu Z (2016). Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios.Solid Earth Sci, 1(1): 5–27
CrossRef
Google scholar
|
[91] |
Liu D, Shi R, Ding L, Huang Q, Zhang X, Yue Y, Zhang L (2017). Zircon U–Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Xizang: implications for the subduction of the Bangong–Nujiang Tethyan Ocean.Gondwana Res, 41: 157–172
CrossRef
Google scholar
|
[92] |
Liu J, Su T, Spicer R A, Tang H, Wu F X, Srivastava G, Spicer T, Van Do T, Deng T, Zhou Z K (2019). Biotic interchange through lowlands of Xizang Plateau suture zones during Paleogene.Palaeogeogr Palaeoclimatol Palaeoecol, 524: 33–40
CrossRef
Google scholar
|
[93] |
Liu X, Gao R, Guo X, Ding L (2023). Detrital zircon U-Pb geochronology of the Lunpola basin strata constrains the Cenozoic tectonic evolution of central Xizang.Gondwana Res, 113: 179–193
CrossRef
Google scholar
|
[94] |
Lu L, Jin X, Yan L, Li W, Wei T, Shen Y (2024). Early uplift and exhumation of the Tanggula granitoid pluton since the Late Cretaceous: implications for the stepwise topographic growth model in the eastern Qiangtang terrane.Geol Soc Am Bull, 147–148: 22
CrossRef
Google scholar
|
[95] |
Ma P F, Wang L C, Wang C S, Wu X H, Wei Y S (2015). Organic-matter accumulation of the lacustrine Lunpola oil shale, central Xizang Plateau: controlled by the paleoclimate, provenance, and drainage system.Int J Coal Geol, 147: 58–70
CrossRef
Google scholar
|
[96] |
Madhavaraju J (2015). Geochemistry of late Cretaceous sedimentary rocks of the Cauvery Basin, south India: constraints on paleoweathering, provenance, and end Cretaceous environments. In: Ramkumar M, ed. Chemostratigraphy. Netherlands: Elsevier Science, 185–214
|
[97] |
Madukwe H Y, Ayodele S O, Akinyemi S A, Adebayo O F (2016). Classification, maturity, provenance, tectonic setting, and source-area weathering of Ipole and Erin Ijesa stream sediments, south west Nigeria.Intern J Adv Sci Techn Res, 6(1): 232–255
|
[98] |
Mao Z Q, Meng Q Q, Fang X M, Zhang T, Wu F L, Yang Y, Zhang W L, Zan J B, Tan M Q (2019). Recognition of tuffs in the middle-upper Dingqinghu Fm., Lunpola Basin, central Xizang Plateau: constraints on stratigraphic age and implications for paleoclimate. Palaeogeogr Palaeoclimatol Palaeoecol, 525: 44–56
|
[99] |
McLennan S M, Hemming S R, Taylor S R, Eriksson K A (1995). Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America.Geochim Cosmochim Acta, 59(6): 1153–1177
CrossRef
Google scholar
|
[100] |
McLennan S M, Hemming S, McDaniel D K, Hanson G N (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Special Papers-Geological Society of America, 21–21
|
[101] |
McLennan S M, Taylor S R, Eriksson K A (1983). Geochemistry of Archean shales from the Pilbara Supergroup, western Australia.Geochim Cosmochim Acta, 47(7): 1211–1222
CrossRef
Google scholar
|
[102] |
McLennan S M, Taylor S R, Hemming S R (2006). Composition, Differentiation, and Evolution of Continental Crust: Constraints from Sedimentary Rocks and Heat Flow. Cambridge, UK: Cambridge University Press
|
[103] |
Meng Q T, Liu Z J, Bruch A A, Liu R, Hu F (2012). Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China.J Asian Earth Sci, 45: 95–105
CrossRef
Google scholar
|
[104] |
Mi W T, Yang W G, Zhu L D, Wu C G, Chen A Q (2018). Provenance of paleogene sediments in the south depression of Nima Basin, central Xizang and its geological implications.Geotectonica et Metallogenia, 42(1): 16
|
[105] |
Michalopoulos P, Aller R C (1995). Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles.Science, 270(5236): 614–617
CrossRef
Google scholar
|
[106] |
Molnar P, Boos W R, Battisti D S (2010). Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Xizang Plateau.Annu Rev Earth Planet Sci, 38(1): 77–102
CrossRef
Google scholar
|
[107] |
Molnar P, England P, Martinod J (1993). Mantle dynamics, uplift of the Xizang Plateau, and the Indian monsoon.Rev Geophys, 31(4): 357–396
CrossRef
Google scholar
|
[108] |
Moradi A V, Sarı A, Akkaya P (2016). Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: implications for paleoclimate conditions, source–area weathering, provenance and tectonic setting.Sediment Geol, 341: 289–303
CrossRef
Google scholar
|
[109] |
Nesbitt H W (1979). Mobility and fractionation of rare earth elements during weathering of a granodiorite.Nature, 279(5710): 206–210
CrossRef
Google scholar
|
[110] |
Nesbitt H W, Markovics G (1997). Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments.Geochim Cosmochim Acta, 61(8): 1653–1670
CrossRef
Google scholar
|
[111] |
Nesbitt H, Young G M (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.Nature, 299(5885): 715–717
CrossRef
Google scholar
|
[112] |
Potter P E (1978). Petrology and chemistry of modern big river sands.J Geol, 86(4): 423–449
CrossRef
Google scholar
|
[113] |
Qiu X W, Liu C Y, Wang F F, Deng Y, Mao G Z (2015). Trace and rare earth element geochemistry of the Upper Triassic mudstones in the southern Ordos Basin, central China.Geol J, 50(4): 399–413
CrossRef
Google scholar
|
[114] |
Ramos-Vázquez M A, Armstrong-Altrin J S (2019). Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico.Mar Pet Geol, 110: 650–675
CrossRef
Google scholar
|
[115] |
Rasmussen C, Brantley S, Richter D D, Blum A, Dixon J, White A F (2011). Strong climate and tectonic control on plagioclase weathering in granitic terrain.Earth Planet Sci Lett, 301(3−4): 521–530
CrossRef
Google scholar
|
[116] |
Raymo M E, Ruddiman W F (1992). Tectonic forcing of late Cenozoic climate.Nature, 359(6391): 117–122
CrossRef
Google scholar
|
[117] |
Roddaz M, Viers J, Brusset S, Baby P, Boucayrand C, Hérail G (2006). Controls on weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments.Chem Geol, 226(1−2): 31–65
CrossRef
Google scholar
|
[118] |
Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding L, Heizler M (2012). Thermochronologic evidence for plateau formation in central Xizang by 45 Ma.Geology, 40(2): 187–190
CrossRef
Google scholar
|
[119] |
Roser B P, Cooper R A, Nathan S, Tulloch A J (1996). Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand.N Z J Geol Geophys, 39(1): 1–16
CrossRef
Google scholar
|
[120] |
Roser B P, Korsch R J (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data.Chem Geol, 67(1−2): 119–139
CrossRef
Google scholar
|
[121] |
Ross D J, Bustin R M (2009). Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin.Chem Geol, 260(1−2): 1–19
CrossRef
Google scholar
|
[122] |
Rowley D B, Currie B S (2006). Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Xizang.Nature, 439(7077): 677–681
CrossRef
Google scholar
|
[123] |
Rowley D B, Ingalls M, Colman A S, Currie B, Li S, Olack G, Lin D (2015). ~55 Ma aged high topography of the Lhasa Block From Stable and clumped isotope paleoaltimetry: implications for ~50±25% crustal mass deficit in the India-Asia collisional system. In AGU Fall Meeting Abstracts, Vol. 2015, T12B–06
|
[124] |
Roy P D, Caballero M, Lozano R, Smykatz-Kloss W (2008). Geochemistry of late quaternary sediments from Tecocomulco lake, central Mexico: implication to chemical weathering and provenance.Chem Erde, 68(4): 383–393
CrossRef
Google scholar
|
[125] |
Shekhar S, Shukla A, Kumar P (2018). Geochemical and petrographic interpretation of Sandhan Formation: an insight into provenance, tectonics and paleoclimatic conditions.Earth Sci India, 11(3): 11
CrossRef
Google scholar
|
[126] |
Singh P (2009). Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes.Chem Geol, 266(3−4): 242–255
CrossRef
Google scholar
|
[127] |
Snell K E, Thrasher B L, Eiler J M, Koch P L, Sloan L C, Tabor N J (2013). Hot summers in the Bighorn Basin during the early Paleogene.Geology, 41(1): 55–58
CrossRef
Google scholar
|
[128] |
Spicer R A, Su T, Valdes P J, Farnsworth A, Wu F X, Shi G, Spicer T E, Zhou Z (2021b). The topographic evolution of the Xizang Region as revealed by palaeontology.Palaeobiodivers Palaeoenviron, 101(1): 213–243
CrossRef
Google scholar
|
[129] |
Spicer R A, Su T, Valdes P J, Farnsworth A, Wu F X, Shi G, Spicer T E, Zhou Z (2021a). Why ‘the uplift of the Xizang Plateau’ is a myth.Nat Sci Rev, 8(1): 091
|
[130] |
Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K (2019). No high Xizang Plateau until the Neogene.Sci Adv, 5(3): eaav2189
CrossRef
Google scholar
|
[131] |
Su T, Spicer R A, Wu F X, Farnsworth A, Huang J, Del Rio C, Deng T, Ding L, Deng W Y D, Huang Y J, Hughes A, Jia L B, Jin J H, Li S F, Liang S Q, Liu J, Liu X Y, Sherlock S, Spicer T, Srivastava G, Tang H, Valdes P, Wang T X, Widdowson M, Wu M X, Xing Y W, Xu C L, Yang J, Zhang C, Zhang S T, Zhang X W, Zhao F, Zhou Z K (2020). A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Xizang.Proc Natl Acad Sci USA, 117(52): 32989–32995
CrossRef
Google scholar
|
[132] |
Sun J M, Xu Q H, Liu W M, Zhang Z Q, Xue L, Zhao P (2014). Palynological evidence for the latest Oligocene−early Miocene paleoelevation estimate in the Lunpola Basin, central Xizang.Palaeogeogr Palaeoclimatol Palaeoecol, 399: 21–30
CrossRef
Google scholar
|
[133] |
Sun S, Chen A Q, Chen H D, Hou M C, Yang S, Xu S L, Wang F, Huang Z F, Ogg J G (2022). Early Permian chemical weathering indices and paleoclimate transition linked to the end of the coal-forming episode, Ordos Basin, North China Craton.Palaeogeogr Palaeoclimatol Palaeoecol, 585: 110743
CrossRef
Google scholar
|
[134] |
Tang H, Liu J, Wu F X, Spicer T, Spicer R A, Deng W Y D, Xu C L, Zhao F, Huang J, Li S F, Su T, Zhou Z K (2019). Extinct genus Lagokarpos reveals a biogeographic connection between Xizang and other regions in the Northern Hemisphere during the Paleogene.J Syst Evol, 57(6): 670–677
CrossRef
Google scholar
|
[135] |
Taylor S R, McLennan S M (1985). The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific, 312
|
[136] |
Tribovillard N, Algeo T J, Lyons T, Riboulleau A (2006). Trace metals as paleoredox and paleoproductivity proxies: an update.Chem Geol, 232(1−2): 12–32
CrossRef
Google scholar
|
[137] |
Verma S P, Armstrong-Altrin J S (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins.Chem Geol, 355: 117–133
CrossRef
Google scholar
|
[138] |
Verma S P, Armstrong-Altrin J S (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings.Sediment Geol, 332: 1–12
CrossRef
Google scholar
|
[139] |
Vital H, Stattegger K (2000). Major and trace elements of stream sediments from the lowermost Amazon River.Chem Geol, 168(1−2): 151–168
CrossRef
Google scholar
|
[140] |
Wang C S, Dai J G, Zhao X X, Li Y L, Graham S A, He D F, Ran B, Meng J (2014a). Outward-growth of the Xizang Plateau during the Cenozoic: a review.Tectonophysics, 621: 1–43
CrossRef
Google scholar
|
[141] |
Wang H, Dutta S, Kelly R S, Rudra A, Li S, Zhang Q Q, Zhang Q Q, Wu Y X, Cao M Z, Wang B, Li J G, Zhang H C (2018b). Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Xizang.Palaeoworld (Amst), 27(4): 506–513
CrossRef
Google scholar
|
[142] |
Wang P, Du Y, Yu W, Algeo T J, Zhou Q, Xu Y, Qi L, Yuan L, Pan W (2020). The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history.Earth Sci Rev, 201: 103032
CrossRef
Google scholar
|
[143] |
Wang Q, Zhu D C, Zhao Z D, Liu S A, Chung S L, Li S M, Liu D, Dai J G, Wang L Q, Mo X X (2014b). Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Xizang: products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone.Lithos, 198–199: 24–37
CrossRef
Google scholar
|
[144] |
Wang S F, Ch Y, Yi H S, Tang W Q, Zhou Y X, Cui R L, Wu X H, Bai R, Yang Y (2023). The characteristics of n-alkanes from the Palaeogene lacustrine oil shale in the Kanggale area, Nyima Basin, and their paleoenvironment and Paleoclimate significance.Sediment Geol Tethyan Geol, 43(3): 542–554
|
[145] |
Wang Z W, Wang J, Fu X G, Feng X L, Wang D, Song C Y, Chen W B, Zeng S Q (2017a). Petrography and geochemistry of upper Triassic sandstones from the Tumengela Formation in the Woruo Mountain area, North Qiangtang Basin, Xizang: implications for provenance, source area weathering, and tectonic setting.Isl Arc, 26(4): e12191
CrossRef
Google scholar
|
[146] |
Wang Z W, Wang J, Fu X G, Zhan W Z, Armstrong-Altrin J S, Yu F, Feng X L, Song C Y, Zeng S Q (2018a). Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Xizang: implications for paleoenvironment, provenance, and tectonic setting.J Asian Earth Sci, 160: 118–135
CrossRef
Google scholar
|
[147] |
Wang Z W, Wang J, Fu X G, Zhan W Z, Yu F, Feng X, Song C L, Chen W B, Zeng S Q (2017b). Organic material accumulation of Carnian mudstones in the North Qiangtang Depression, eastern Tethys: controlled by the paleoclimate, paleoenvironment, and provenance.Mar Pet Geol, 88: 440–457
CrossRef
Google scholar
|
[148] |
Wei Y, Zhang K X, Garzione C N, Xu Y D, Song B W, Ji J L (2016). Low palaeoelevation of the northern Lhasa terrane during late Eocene: fossil foraminifera and stable isotope evidence from the Gerze Basin.Sci Rep, 6(1): 27508
CrossRef
Google scholar
|
[149] |
Weltje G J, von Eynatten H (2004). Quantitative provenance analysis of sediments: review and outlook.Sediment Geol, 171(1−4): 1–11
CrossRef
Google scholar
|
[150] |
Wesolowski D J (1992). Aluminum speciation and equilibria in aqueous solution: I. The solubility of gibbsite in the system Na-K-Cl-OH-Al (OH)4 from 0 to 100 °C.Geochim Cosmochim Acta, 56(3): 1065–1091
CrossRef
Google scholar
|
[151] |
West A J (2012). Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks.Geology, 40(9): 811–814
CrossRef
Google scholar
|
[152] |
Wronkiewicz D J, Condie K C (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance.Geochim Cosmochim Acta, 51(9): 2401–2416
CrossRef
Google scholar
|
[153] |
Wu F X, Miao D S, Chang M M, Shi G L, Wang N (2017). Fossil climbing perch and associated plant megafossils indicate a warm and wet central Xizang during the late Oligocene.Sci Rep, 7(1): 878
CrossRef
Google scholar
|
[154] |
Xia G Q, Zheng D R, Krieg-Jacquier R, Fan Q S, Chen Y, Nel A (2022). The oldest-known Lestidae (Odonata) from the late Eocene of Xizang: palaeoclimatic implications.Geol Mag, 159(4): 511–518
CrossRef
Google scholar
|
[155] |
Xiong Z Y, Liu X H, Ding L, Farnsworth A, Spicer R A, Xu Q, Valdes P, He S L, Zeng D, Wang C, Li Z Y, Guo X D, Su T, Zhao C Y, Wang H Q, Yue Y H (2022). The rise and demise of the Paleogene Central Xizang Valley.Sci Adv, 8(6): 0944
|
[156] |
Xu X L, Shao L Y (2018). Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance.J Palaeogeogr (Chn Ed), 020(003): 515–522
|
[157] |
Xu X T, Szwedo J, Huang D Y, Deng W Y D, Obroślak M, Wu F X, Su T (2022). A new genus of spittlebugs (hemiptera, cercopidae) from the eocene of central Xizang Plateau.Insects, 13(9): 770
CrossRef
Google scholar
|
[158] |
Xue W W, Najman Y, Hu X M, Persano C, Stuart F M, Li W, Ma A L, Wang Y (2022). Late Cretaceous to Late Eocene exhumation in the Nima area, central Xizang: implications for development of low relief topography of the Xizang Plateau.Tectonics, 41(3): e2021TC006989
CrossRef
Google scholar
|
[159] |
Yan H, Long X, Wang X C, Li J, Wang Q, Yuan C, Sun M (2016). Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Ando area, central Xizang: evidence for a slab roll-back of the Bangong-Nujiang Ocean.Lithos, 264: 315–328
CrossRef
Google scholar
|
[160] |
Yang J H, Cawood P A, Du Y S, Li W Q, Yan J X (2016). Reconstructing Early Permian tropical climates from chemical weathering indices.Geol Soc Am Bull, 128(5−6): 739–751
CrossRef
Google scholar
|
[161] |
Yang Y B, Nie J S, Miao Y F, Wan S M, Jonell T N (2022). Xizang Plateau uplift and environmental impacts: new progress and perspectives.Front in Earth Sci, 10: 1020354
CrossRef
Google scholar
|
[162] |
Zeng S Q, Wang J, Chen W B, Fu X G, Feng X L, Song C Y, Wang D, Sun W (2020). Geochemical constraints on the provenance, paleoenvironment, and tectonic setting of late Triassic mudstones in the western Qiangtang Basin, Xizang.Lithosphere, 12(5): 631–648
|
[163] |
Zhang X, Gélin U, Spicer R A, Wu F, Farnsworth A, Chen P, Del Rio C, Li S, Liu J, Huang J, Spicer T E, Tomlinson K W, Valdes P J, Xu X, Zhang S, Deng T, Zhou Z, Su T (2022). Rapid Eocene diversification of spiny plants in subtropical woodlands of central Xizang.Nat Commun, 13(1): 3787
CrossRef
Google scholar
|
[164] |
Zhou L, Friis H, Poulsen M L K (2015). Geochemical evaluation of the late Paleocene and early Eocene shales in Siri Canyon, Danish-Norwegian Basin.Mar Pet Geol, 61: 111–122
CrossRef
Google scholar
|
[165] |
Zhu D C, Wang Q, Cawood P A, Zhao Z D, Mo X X (2017). Raising the Gangdese mountains in southern Xizang.J Geophys Res Solid Earth, 122(1): 214–223
CrossRef
Google scholar
|
[166] |
Zhu D C, Wang Q, Zhao Z D, Chung S L, Cawood P A, Niu Y L, Liu S A, Wu F Y, Mo X X (2015). Magmatic record of India-Asia collision.Sci Rep, 5(1): 14289
CrossRef
Google scholar
|
[167] |
Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X (2013). The origin and pre-Cenozoic evolution of the Xizang Plateau.Gondwana Res, 23(4): 1429–1454
CrossRef
Google scholar
|
/
〈 |
|
〉 |