Dust transport information and paleoclimatic changes revealed by the loess in Ranwu, south-eastern Xizang

Meihui PAN, Huimin ZHAO, Anna YANG, Yougui CHEN, Chenlu LI

PDF(25537 KB)
PDF(25537 KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (4) : 956-969. DOI: 10.1007/s11707-023-1092-8
RESEARCH ARTICLE

Dust transport information and paleoclimatic changes revealed by the loess in Ranwu, south-eastern Xizang

Author information +
History +

Abstract

The loess accumulation process has great potential to record patterns of atmospheric circulation change, paleoclimate, and paleoenvironmental evolution. South-eastern Xizang is a climatically sensitive region and here, we analyze a loess profile at Ranwu in order to explore the processes and interactions of dust transport and paleoclimate evolution in the region. Based on parametric grain size end-member analysis, optically stimulated luminescence (OSL) dating, and environmental proxies we show that the Ranwu loess profile comprises five end members (EMs). EM1 represents the fine silt fraction transported by high-altitude westerly winds over long distances; EM2 represents the medium silt fraction accumulated by glacier winds; EM3 is the coarse silt fraction transported by local dust storms under the action of strong glacier winds; EM4 represents the very fine sand fraction transported by strong local dust storms, different wind strengths controls the relative proportion of EM3 and EM4 over time. EM5 is the coarse sand fraction formed from the product of strong weathering of gravels. OSL dating shows loess sedimentation at Ranwu started around 11.16 ka. The prevailing climate was generally warm and wet between 11.6 and 4.2 ka, with four cooling events at 10.50, 9.18, 7.85, and 6.37 ka. Extensive paleosol development between 8.2 and 4.2 ka, a change to dry and cold climate conditions was favorable for loess formation after 4.2 ka. The palaeoenvironmental changes and abrupt climate events recorded in the Ranwu loess sequence are consistent with Holocene global environmental changes.

Graphical abstract

Keywords

loess / grain size end member / the optically stimulated luminescencethe / dust transport information / environmental evolution / southeastern Xizang region

Cite this article

Download citation ▾
Meihui PAN, Huimin ZHAO, Anna YANG, Yougui CHEN, Chenlu LI. Dust transport information and paleoclimatic changes revealed by the loess in Ranwu, south-eastern Xizang. Front. Earth Sci., 2023, 17(4): 956‒969 https://doi.org/10.1007/s11707-023-1092-8

References

[1]
An F Y, Ma H Z, Wei H C, Lai Z P (2012). Distinguishing aeolian signature from lacustrine sediments of the Qaidam Basin in northeastern Qinghai-Tibetan Plateau and its palaeoclimatic implications.Aeolian Res, 4: 17–30
CrossRef Google scholar
[2]
An Z S, Kukla G, Porter S C, Xiao J L (1991). Late Quaternary dust flow on the Chinese Loess Plateau.Catena, 18(2): 125–132
CrossRef Google scholar
[3]
An Z S, Sun Y B, Zhou W J, Liu W G, Qiang X K, Wang X L, Xian F, Cheng P, Burr G S (2014). Chinese loess and the East Asian Monsoon. In: An Z, ed. Late Cenozoic Climate Change in Asia. Springer: 23–143
[4]
Bai M, Lu R J, Ding Z Y, Wang L D (2020). Particle size end meta-analysis of the Qinghai Lake East Sandy and its indicative significance. Quat Res, 40(5): 1203–1215 (in Chinese)
[5]
Bokhorst M P, Vandenberghe J, Sümegi P, Łanczont M, Gerasimenko N P, Matviishina Z N, Markovi S B, Frechen M (2011). Atmospheric circulation patterns in central and eastern Europe during the weichse-lian pleniglacial inferred from loess grain-size records.Quat Int, 234(1–2): 62–74
CrossRef Google scholar
[6]
Chai J N, Cha X C, Huang C C, Zhou Y L, Pang R W, Zhang Y Z, Wang N, Cook Y, Rong X Q, Shang R Q (2021). Identification of the genesis of riparian sediments in the Jiaman section of the Yellow River in the Ruoerge Basin.J Lanzhou U (Nat Sci Ed), 57(5): 600–607 (in Chinese)
[7]
Chen H T, Kong F B, Xu S J, Miao X D (2021). Dust accumulation processes revealed by loess grain size end metas since the Late Pleistocene in the Miaodao Islands. Quat Res, 41(5): 1306–1316 (in Chinese)
[8]
Cheng L Q, Song Y G, Li Y, Zhang Z P (2018). Preliminary application of particle size end-member model in the study of dust sources and paleoclimate of loess in Xinjiang. J Sedimentol, 36(6): 1148–1156 (in Chinese)
[9]
Cheng L Q, Yang L H, Long H, Song Y G, Chen Z, Lan M W, Xie M P, Dong Z B (2023a). Early Holocene dust activity variation in the southern Tibetan Plateau and its response to solar irradiance.Palaeogeogr Palaeoclimatol Palaeoecol, 620: 111561
CrossRef Google scholar
[10]
Cheng L Q, Yang L H, Long H, Song Y G, Miao X D, Zhang J R, Wu Y B, Lan M W, Xie M P, Dong Z B (2023b). Milankovitch-paced South Asian monsoons during Marine Isotope Stage 5.Global Planet Change, 225: 104132
CrossRef Google scholar
[11]
Cheng L Q, Yang L H, Long H, Zhang J R, Miao X D, Wu Y B, Lan M W, Song Y G, Dong Z B (2023c). Late Holocene change in South Asian monsoons and their influences on human activities in the southern Tibetan Plateau.Catena, 228: 107153
CrossRef Google scholar
[12]
Dasch E J (1969). Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks.Geochim Cosmochim Acta, 33(12): 1521–1552
CrossRef Google scholar
[13]
Ding Z L, Derbyshire E, Yang S L, Yu Z W, Xiong S F, Liu T S (2002). Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography, 17(3): 5-1−5-21 10.1029/2001PA000725
[14]
Ding Z, Lu R, Lyu Z, Liu X (2019). Geochemical characteristics of Holocene aeolian deposits east of Qinghai Lake, China, and their paleoclimatic implications.Sci Total Environ, 692: 917–929
CrossRef Google scholar
[15]
Fang X M, Han Y X, Ma J H, Song L C, Yang S L, Zhang X H (2004). Dust storms and loess accumulation on the Tibetan Plateau: a case study of dust event on 4 March 2003 in Lhasa.Chin Sci Bull, 49(9): 953–960
CrossRef Google scholar
[16]
Gao F Y, Yang J H, Wang S Y, Wang Y J, Li K M, Wang F, Ling Z Y (2021). Variation of the winter mid-latitude Westerlies in the Northern Hemisphere during the Holocene revealed by aeolian deposits in the southern Tibetan Plateau.Quat Res, 107: 104–112
[17]
Gou S W, Wu Y Q, Xia D D, Pan J (2012). Spatial and temporal distribution characteristics of winter and spring dust storm frequency and its circulation background on the Qinghai-Tibet Plateau. J Natural Hazards, 21(5): 9 (in Chinese)
[18]
Heermance R V, Pullen A, Kapp P, Garzione C N, Bogue S, Ding L, Song P P (2013). Climatic and tectonic controls on sedimentation and erosion during the Pliocene–Quaternary in the Qaidam Basin (China).Geol Soc Am Bull, 125(5–6): 833–856
[19]
Jacobs P M, Mason J A, Hanson P R (2011). Mississippi Valley regional source of loess on the southern Green Bay Lobe land surface, Wisconsin.Quat Res, 75(3): 574–583
CrossRef Google scholar
[20]
Kapp P, Pelletier J D, Rohrmann A, Heermance R, Russell J, Ding L (2011). Wind erosion in the Qaidam basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau.GSA Today, 21(4/5): 4–10
CrossRef Google scholar
[21]
Kong F B, Chen H T, Xu S J (2021). Dust accumulation processes and paleoclimatic significance of particle size indication of loess in Zhangqiu, Shandong. J Geog, 76(5): 14 (in Chinese)
[22]
Kong X, Zhou W, Beck J W, Xian F, Qiang X, Ao H, Wu Z, An Z (2020). Loess magnetic susceptibility flux: a new proxy of East Asian monsoon precipitation.J Asian Earth Sci, 201(2): 104489
CrossRef Google scholar
[23]
Lai Z P (2006). Testing the use of an OSL Standardised Growth Curve (SGC) for De determination on quartz from the Chinese Loess Plateau.Radiat Meas, 41(1): 9–16
CrossRef Google scholar
[24]
Lehmkuhl F, Schulte P, Zhao H, Hülle D, Protze J, Stauch G (2014). Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau.Catena, 117: 23–33
CrossRef Google scholar
[25]
Li L, Xu C, Zhang Z J, Huang Y D (2021). A review of landslide hazard research on the Loess Plateau. J College Disaster Prevention Sci Techn, 23(4): 11 (in Chinese)
[26]
Li S, Yang S L, Liang M H, Cheng T, Chen H, Liu N N (2018). An end-member model study on the particle size distribution of loess on the eastern Qinghai-Tibet Plateau. Earth and Environment, 46(4): 8 (in Chinese)
[27]
Li Y, Shi W, Aydin A, Beroya-Eitner M A, Gao G (2020). Loess genesis and worldwide distribution.Earth Sci Rev, 201: 102947
CrossRef Google scholar
[28]
Liang A M, Qu J J, Dong Z B, Su Z Z, Wu B, Zhang Z Y, Qian G Q, Gao J L, Pang Y J, Zhang C X (2020). Particle size end-membership of sediments in the Kumtag Desert and its source insights. China Desert, 40(2): 10 (in Chinese)
[29]
Ling Z Y, Yang J H, Wang Z Q, Jin J H, Xia D S, Yang S L, Wang X, Chen F H (2023). Spatiotemporal differences in Holocene climate change in the Yarlung Tsangpo catchment, southern Tibetan Plateau, reconstructed from two sandy loess sequences.Palaeogeogr Palaeoclimatol Palaeoecol, 616: 111473
CrossRef Google scholar
[30]
Liu K, Lai Z P (2012). Chronology of Holocene sediments from the archaeological Salawusu site in the Mu Us desert in China and its palaeoenvironmental implications.J Asian Earth Sci, 45: 247–255
CrossRef Google scholar
[31]
Long H, Wang N, Ma H Z, Li Y (2007). Regional wind and sand characteristics of the lake sedimentary record at the northwest margin of the Tengri Desert.J Sedimentol, 25(4): 626–631 (in Chinese)
[32]
Murray A S, Wintle A G (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol.Radiation Measure, 32(1): 57–73
CrossRef Google scholar
[33]
Nottebaum V, Stauch G, Hartmann K, Zhang J R, Lehmkuhl F (2015). Unmixed loess grain size populations along the northern Qilian Shan (China): relationships between geomorphologic, sedimentologic and climatic controls.Quat Int, 372: 151–166
CrossRef Google scholar
[34]
Paterson G A, Heslop D (2015). New methods for unmixing sediment grain size data.Geochem Geophys Geosyst, 16(12): 4494–4506
CrossRef Google scholar
[35]
Peck J A, King J W, Colman S M, Kravchinsky V A (1994). A rock-magnetic record from Lake Baikal, Siberia: evidence for Late Quaternary climate change.Earth Planet Sci Lett, 122(1–2): 221–238
CrossRef Google scholar
[36]
Prins M A, Vriend M, Nugteren G, Vandenberghe J, Lu H, Zheng H, Weltje G J (2007). Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records.Quat Sci Rev, 26(1–2): 230–242
CrossRef Google scholar
[37]
Pye K (1987). Aeolian Dust and Dust Deposits. London: Academic Press
[38]
Rea D K, Leinen M, Janecek T R (1985). Geologic approach to the long-term history of atmospheric circulation.Science, 227(4688): 721–725
CrossRef Google scholar
[39]
Roberts H M, Duller G A T (2004). Standardised growth curves for optical dating of sediment using multiple-grain aliquots.Radiat Meas, 38(2): 241–252
CrossRef Google scholar
[40]
Shen C M (2003). Millennial-scale variations and centennial-scale events in the southwest Asian Monsoon: pollen evidence from Tibet. Dissertation for Doctoral Degree. Baton Rouge: Louisiana State University
[41]
Song J, Chun X, Bai X M, Sichin B (2016). A review of research on particle size analysis in Chinese deserts.Deserts China, 36(3): 597–603 (in Chinese)
[42]
Sun C C, Zhou L M, Zheng X M, Niu R, Meng Q H, Wang L, Du D D, Xu H Y, Wang Z, Chu H M (2016). Peat record of climate change since the Holocene in the Yangbajing Basin, Qinghai-Tibet Plateau. Marine Geol Quat Geol, 36(5): 7 (in Chinese)
[43]
Sun D, Bloemendal J, Rea D, An Z S, Vandenberghe J, Lu H Y, Su R X, Liu T S (2004). Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications.Catena, 55(3): 325–340
CrossRef Google scholar
[44]
Sun Y, He L, Liang L, An Z (2011). Changing color of Chinese loess: geochemical constraint and paleoclimatic significance.J Asian Earth Sci, 40(6): 1131–1138
CrossRef Google scholar
[45]
Sun Z X , Jiang Y Y , Wang Q B ,Owens P R (2018). A fractal evaluation of particle size distributions in an eolian loess-paleosol sequence and the linkage with pedogenesis.Catena, 165: 80–91
CrossRef Google scholar
[46]
Sweeney M R, Mason J A (2013). Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA.J Geophys Res Earth Surf, 118(3): 1460–1471
CrossRef Google scholar
[47]
Thompson L G, Yao T, Mosley-Thompson E, Davis M E, Henderson K A, Lin P N (2000). A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores.Science, 289(5486): 1916–1919
CrossRef Google scholar
[48]
Újvári , Kok J F, Varga G, Kovács J (2016). The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies.Earth Sci Rev, 154: 247–278
CrossRef Google scholar
[49]
van Hateren J A, Prins M A, van Balen R T (2018). On the genetically meaningful decomposition of grain-size distributions: a comparison of different end-member modelling algorithms.Sediment Geol, 375: 49–71
CrossRef Google scholar
[50]
Vandenberghe J (2013). Grain size of fine-grained windblown sediment: a powerful proxy for process identification.Earth Sci Rev, 121: 18–30
CrossRef Google scholar
[51]
Wang J M, Pan B T (1997). Basic characteristics of loess deposition and its environment in the eastern Qinghai-Tibet Plateau.Desert China, 17(4): 395–402 (in Chinese)
[52]
Wang N L, Yao T D, Thompson L G, Henderson K A (2002). Evidence from the Guria ice core record of an early Holocene intense cooling event. Sci Bull (Beijing), 47(11): 6 (in Chinese)
[53]
Wang Q S, Song Y G, Li J J, Zhao Z J, Rong P (2015). Color characteristics and paleoclimatic significance of late glacial-interglacial cyclonic Chaona loess. Geoscience, 35(11): 1489–1494 (in Chinese)
[54]
Wang Z D, Huang C C, Yang H J, Zha X C, Zhou Y L (2018). Physical source characteristics and evolution of loess grain size indication since the Late Pleistocene in the eastern foothills of Liupan Mountain.Geoscience, 38(5): 818–826 (in Chinese)
[55]
Wang Z J, Chen S T, Zhou X Q, Liang Y J, Wang Y J (2020). Spectral characteristics of millennial scale events of Asian monsoon during the last Glacial Period. Quat Res, 40(4): 13 (in Chinese)
[56]
Weltje G J (1997). End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem.Math Geol, 29(4): 503–549
CrossRef Google scholar
[57]
Xiong J L, Fan X M, Dou X Y, Yang Y H (2021). Seasonal variation of Yalong glacier flow velocity in the Ranwu Lake basin, southeast Tibet. J Wuhan U (Inform Sci Ed), 46(10): 1579–1588 (in Chinese)
[58]
Xu L Y, Yang L H, Zhang S, Zhai T C (2021). Particle size end meta-analysis and indicative significance of reticulated laterite in Xuancheng Xiangyang profile.Earth Environ, 49(6): 646–654 (in Chinese)
[59]
Xu X W, Qiang X K, An Z S, Li X B, Li P, Sun Y F (2010). Magnetic susceptibility records of lacustrine core in Heqing Basin and its paleoenvironmental significance.Chinese J Geomech, 16(4): 372–382 (in Chinese)
[60]
Yang F, Zhang G L, Yang F, Yang R M (2016). Pedogenetic interpretations of particle-size distribution curves for an alpine environment.Geoderma, 282: 9–15
CrossRef Google scholar
[61]
Yang J H, Xia D S, Gao F Y, Wang S Y, Li D X, Fan Y J, Chen Z X, Tian W D, Liu X Y, Sun X Y, Wang Z Q, Wang F (2021). Holocene moisture evolution and its response to atmospheric circulation recorded by aeolian deposits in the southern Tibetan Plateau.Quat Sci Rev, 270: 107169
CrossRef Google scholar
[62]
Yang L J, Ma X C, Jia J J, Yan J, Luan Z D (2020). Effects of Yellow River diversion and sand transport changes on the particle size characteristics of muddy wedge sediments in Shandong Peninsula over the past 100 years.J Oceanogr, 42(1): 78–89 (in Chinese)
[63]
Yang S L, Chen Z X, Chen H, Luo Y L, Liu L, Liu X J, Li Q, Zhou J T, Li P U (2022). Magnetic properties of the Ganzi Loess and their implications for precipitation history in the Eastern Tibetan Plateau since the Last Interglacial.Paleoceanogr Paleoclimatol, 37(2): e2021PA004322
CrossRef Google scholar
[64]
Yang S L, Ding Z (2014). A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability.Geochem Geophys Geosyst, 15(3): 798–814
CrossRef Google scholar
[65]
Yang S, Ding Z L (2003). Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles- art. no. 2058.Geophys Res Lett, 30(20): 2003GL018346
CrossRef Google scholar
[66]
Zan J B, Fang X M, Yang S L, Yan M D (2013). Evolution of the arid climate in high Asia since 1 Ma: evidence from loess deposits on the surface and rims of the Tibetan Plateau. Quat Intern, 313–314: 210–217
[67]
Zan J B, Li X J, Kang J, Guo Z G, Mao Z Q (2020). Intensified pedogenesis caused the increase in the fine particle content of late Cenozoic fluvial and lacustrine deposits in the NE Tibetan Plateau.Sediment Geol, 398: 105587
CrossRef Google scholar
[68]
Zhang , J F, Feng J L, Hua G, Wang J B, Yang Y B, Lin Y C, Jiang T, Zhu L P (2015). Holocene proglacial loess in the Ranwu valley, southeastern Tibet, and its paleoclimatic implications.Quat Intern, 372: 9–22
CrossRef Google scholar
[69]
Zhao C, Liang J T, Wang J C, Yang L, Zhang S (2019). Remote sensing analysis of glacier dynamics changes in the Palungzangbu basin (Bomi-Ranwu profile). Sci Techn Eng, 19(21): 7 (in Chinese)
[70]
Zhong N, Jiang H C, Li H B, Xu H Y, Liang L J, Shi W (2020). Particle size end-member inversion of lacustrine sediments from Xinmacun in the upper Minjiang River and its recorded tectonic and climatic events.J Geol, 94(3): 968–981 (in Chinese)

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 41807448).

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2023 Higher Education Press
审图号:GS京(2024)0126号
AI Summary AI Mindmap
PDF(25537 KB)

Accesses

Citations

Detail

Sections
Recommended

/