Global and regional controls on carbon-sulfur isotope cycling during SPICE event in south China

Xianfeng TAN, Long LUO, Hongjin CHEN, Jon GLUYAS, Zihu ZHANG, Chensheng JIN, Lidan LEI, Jia WANG, Qing CHEN, Meng LI

PDF(17041 KB)
PDF(17041 KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (3) : 713-726. DOI: 10.1007/s11707-022-0987-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Global and regional controls on carbon-sulfur isotope cycling during SPICE event in south China

Author information +
History +

Abstract

The positive S-isotopic excursion of carbonate-associated sulfate (δ34SCAS) is generally in phase with the Steptoean positive carbon isotope excursion (SPICE), which may reflect widespread, global, transient increases in the burial of organic carbon and pyrite sulfate in sediments deposited under large-scale anoxic and sulphidic conditions. However, carbon-sulfur isotope cycling of the global SPICE event, which may be controlled by global and regional events, is still poorly understood, especially in south China. Therefore, the δ13CPDB, δ18OPDB,δ34SCAS, total carbon (TC), total organic carbon (TOC) and total sulfate (TS) of Cambrian carbonate of Waergang section of Hunan Province were analyzed to unravel global and regional controls on carbon-sulfur cycling during SPICE event in south China.

The δ34SCAS values in the onset and rising limb are not obviously higher than that in the preceding SPICE, meanwhile sulfate (δ34SCAS) isotope values increase slightly with increasing δ13CPDB in rising limb and near peak of SPICE (130–160 m). The sulfate (δ34SCAS) isotope values gradually decrease from 48.6‰ to 18‰ in the peak part of SPICE and even increase from 18‰ to 38.5% in the descending limb of SPICE. The abnormal asynchronous C-S isotope excursion during SPICE event in the south China was mainly controlled by the global events including sea level change and marine sulfate reduction, and it was also influenced by regional events such as enhanced siliciclastic provenance input (sulfate), weathering of a carbonate platform and sedimentary environment. Sedimentary environment and lithology are not the main reason for global SPICE event but influence the δ13CPDB excursion-amplitude of SPICE. Sea level eustacy and carbonate platform weathering probably made a major contribution to the δ13CPDB excursion during the SPICE, in particularly, near peak of SPICE. Besides, the trilobite extinctions, anoxia, organic-matter burial and siliciclastic provenance input also play an important role in the onset, early and late stage of SPICE event.

Graphical abstract

Keywords

sulfate isotope excursion / terrigenous matter / carbonate platform weathering / sea level change / transitional slope environment / Waergang section

Cite this article

Download citation ▾
Xianfeng TAN, Long LUO, Hongjin CHEN, Jon GLUYAS, Zihu ZHANG, Chensheng JIN, Lidan LEI, Jia WANG, Qing CHEN, Meng LI. Global and regional controls on carbon-sulfur isotope cycling during SPICE event in south China. Front. Earth Sci., 2023, 17(3): 713‒726 https://doi.org/10.1007/s11707-022-0987-0

References

[1]
Ahlberg P,, Axheimer N,, Babcock L E,, Eriksson M E,, Schmitz B,, Terfelt F. ( 2009). Cambrian high-resolution biostratigraphy and carbon isotope chemostratigraphy in Scania, Sweden: first record of the SPICE and DICE excursions in Scandinavia. Lethaia, 42( 1): 2– 16
CrossRef Google scholar
[2]
Arthur M A,, Schlanger S O,, Jenkyns H. ( 1987). The Genomanian-Turonian oceanic anoxic event, II. Palaeoceanographic controls on organic-matter production and preservation. Spec Publ Geol Soc Lond, 26( 1): 401– 420
CrossRef Google scholar
[3]
Bathurst R G C ( 1975). Carbonate Sediments and Their Diagenesis (2nd ed). Amsterdam: Elsevier
[4]
Chen Z,, Wang X,, Hu J,, Yang S,, Zhu M,, Dong X,, Tang Z,, Peng P,, Ding Z. ( 2014). Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene–Eocene Thermal Maximum record from central China. Earth Planet Sci Lett, 408: 331– 340
CrossRef Google scholar
[5]
Chen Z,, Ding Z,, Yang S,, Zhang C,, Wang X. ( 2016). Increased precipitation and weathering across the Paleocene-Eocene Thermal Maximum in central China. Geochem Geophys Geosyst, 17( 6): 2286– 2297
CrossRef Google scholar
[6]
Dahl T W,, Boyle R A,, Canfield D E,, Connelly J N,, Gill B C,, Lenton T M,, Bizzarro M. ( 2014). Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. Earth Planet Sci Lett, 401: 313– 326
CrossRef Pubmed Google scholar
[7]
Derry L A. ( 2010). On the significant of δ13C correlations in ancient sediments. Earth Planet Sci Lett, 296( 3–4): 497– 501
CrossRef Google scholar
[8]
Elrick M,, Rieboldt S,, Saltzman M,, McKay R M. ( 2011). Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event). Geology, 39( 10): 987– 990
CrossRef Google scholar
[9]
Feng Z, Peng Y, Jin Z, Jiang P, Bao Z, Luo Z, Ju T, Tian H, Wang H ( 2001). Lithofacies palaeogeography of the Cambrian in South China. J Palaeogeogr, 3( 1): 1– 14 (in Chinese)
[10]
Feng Z, Peng Y, Jin Z, Jiang P, Bao Z ( 2002). Lithofacies palaeogeography of the Late Cambrian in China. J Palaeogeogr, 4( 3): 1– 10 (in Chinese)
[11]
Gill B C,, Lyons T W,, Saltzman M R. ( 2007). Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr Palaeoclimatol Palaeoecol, 256( 3–4): 156– 173
CrossRef Google scholar
[12]
Gill B C,, Lyons T W,, Frank T D. ( 2008). Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy. Geochim Cosmochim Acta, 72( 19): 4699– 4711
CrossRef Google scholar
[13]
Gill B C,, Lyons T W,, Young S A,, Kump L R,, Knoll A H,, Saltzman M R. ( 2011a). Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature, 469( 7328): 80– 83
CrossRef Pubmed Google scholar
[14]
Gill B C,, Lyons T W,, Jenkyns H C. ( 2011b). A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth Planet Sci Lett, 312( 3–4): 484– 496
CrossRef Google scholar
[15]
Holser W T, Schidlowski M, Mackenzie F T, Maynard J B ( 1988). Geochemical cycles of carbon and sulfur. In: Gregor C B, Garrels R M, Mackenzie F T, Maynard J B, eds. Chemical Cycles in the Evolution of the Earth. New York: Wiley, 105– 173
[16]
Hurtgen M,, Arthur M,, Suits N,, Kaufman A. ( 2002). The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for snowball Earth?. Earth Planet Sci Lett, 203( 1): 413– 429
CrossRef Google scholar
[17]
Hurtgen M T,, Pruss S B,, Knoll A H. ( 2009). Evaluating the relationship between the carbon and sulfur cycles in the later Cambrian ocean: an example from the Port au Port Group, western Newfoundland, Canada. Earth Planet Sci Lett, 281( 3–4): 288– 297
CrossRef Google scholar
[18]
Johnston D T,, Poulton S W,, Dehler C,, Porter S,, Husson J,, Canfield D E,, Knoll A H. ( 2010). An emerging picture of Neoproterozoic ocean chemistry: insights from the Chuar Group, Grand Canyon, USA. Earth Planet Sci Lett, 290( 1–2): 64– 73
CrossRef Google scholar
[19]
Knauth L P,, Kennedy M J. ( 2009). The late Precambrian greening of the Earth. Nature, 460( 7256): 728– 732
CrossRef Pubmed Google scholar
[20]
Kump L R,, Arthur M A,, Patzkowsky M E,, Gibbs M T,, Pinkus D S,, Sheehan P M. ( 1999). A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol, 152( 1–2): 173– 187
CrossRef Google scholar
[21]
Kump L R,, Arthur M A. ( 1999). Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol, 111: 299– 302
[22]
Li C,, Cheng M,, Algeo T J,, Xie S C. ( 2015). A theoretical prediction of chemical zonation in early oceans (>520 Ma). Sci China Earth Sci, 58( 11): 1901– 1909
CrossRef Google scholar
[23]
Li C,, Jin C,, Planavsky N J,, Algeo T J,, Cheng M,, Yang X,, Zhao Y,, Xie S. ( 2017). Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian?. Geology, 45( 8): 743– 746
CrossRef Google scholar
[24]
Li D ( 2017). The interplay between Cambrian ocean chemistry changes and early animal evolution. Dissertation for the Doctoral Degree. Hefei: University of Science and Technology of China (in Chinese)
[25]
Liang W, Mou C, Zhou K, Ge X, Chen C, Xu P ( 2015). Palaeogeography of the Cambrian Epoch 3-Furongian in the Middle and Upper Yangtze region. J Palaeogeogr, 17( 2): 172– 185 (in Chinese)
[26]
Liu Y,, Li C,, Algeo T J,, Fan J,, Peng P. ( 2016). Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in south China. Palaeogeogr Palaeoclimatol Palaeoecol, 463: 180– 191
CrossRef Google scholar
[27]
Lochman-Balk C. ( 1970). Upper Cambrian faunal patterns on the craton. Geol Soc Am Bull, 81( 11): 3197– 3224
CrossRef Google scholar
[28]
Öpik A A. ( 1966). The early Upper Cambrian crisis and its Petrocorrelation. J Proc R Soc N S W, 100: 9– 14
[29]
Palmer A R. ( 1965). Trilobites of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. US Geol Surv Prof Pap, 493: 49– 49
[30]
Palmer A R. ( 1984). The biomere problem: evolution of an idea. J Paleontol, 58: 599– 611
[31]
Paul C R C,, Mitchell S F. ( 1994). Is famine a common factor in marine mass extinctions?. Geology, 22( 8): 679– 682
CrossRef Google scholar
[32]
Peng S. ( 1992). Upper Cambrian biostratigraphy and trilobite faunas of the Cili-Taoyuan area, northwestern Hunan, China. Memoir of the Association Australasian Palaeontologists, 13: 1– 119
[33]
Peng S ( 1990). The Upper Cambrian and trilobite succession in the Taoyuan-Cili area of Hunan Province. J Stratigraphy, 14( 4): 261– 276 (in Chinese)
[34]
Peng S,, Babcock L E,, Robison R A,, Lin H,, Rees M N,, Saltzman M R. ( 2004a). Global Standard Stratotype-section and Point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia, 37( 4): 365– 379
CrossRef Google scholar
[35]
Peng S, Babcock L E, Lin H, Chen Y, Zhu X, Qi Y ( 2004b). The Paibi Section in Hunan, n orthwestern Hunan: a global standard stratotype – section and point for Cambrian Furongian series and Paibi stage. Collection of Papers on Stratigraphic Paleontology, 28: 11– 25 (in Chinese)
[36]
Peng S, Zhu X, Lin H ( 2004c). The first global standard stratotype section and poin t of Cambrian System for Paibian Stage and Furongian Series in China. J Stratigraphy, 28( 1): 92– 94 (in Chinese)
[37]
Peng S,, Robison R A. ( 2000). Agnostoid biostratigraphy across the Middle-Upper Cambrian boundary in Hunan, China. J Paleontol, 74( sp53): 1– 10
CrossRef Google scholar
[38]
Peng S ( 2009). The newly-developed Cambrian biostratigraphic succession and chronostratigraphic scheme for s outh China. Chin Sci Bull, 54( 18): 2691– 2698 (in Chinese)
[39]
Peng Y,, Peng Y,, Lang X,, Ma H,, Huang K,, Li F,, Shen B. ( 2016). Marine carbon-sulfur biogeochemical cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, south China. J Earth Sci, 27( 2): 242– 254
CrossRef Google scholar
[40]
Poulson S R,, John B E. ( 2003). Stable isotope and trace element geochemistry of the basal Bouse Formation carbonate, southwestern United States: implications for the Pliocene uplift history of the Colorado Plateau. Geol Soc Am Bull, 115: 434– 444
CrossRef Google scholar
[41]
Qi Y, Wang Z, Bagnoli G ( 2004). Conodont b iostratigraphy of the GSSP OF the b ase of the Furongian Series and Paibi Stage. J Stratigraphy, 28( 2): 114– 119 (in Chinese)
[42]
Runnegar B,, Saltzman M R,, Kouchinsky A,, Young S A,, Kump L R,, Gill B,, Lyons T,, Young E D. ( 2010). Cambrian SPICE (Steptoean Positive Carbon Isotope Excursion) as a model for Comparable Proterozoic high-amplitude isotopic events. GSA Abstracts with Programs, 42( 5): 398
[43]
Saltzman M R,, Cowan C A,, Runkel A C,, Runnegar B,, Stewart M C,, Palmer A R. ( 2004). The Late Cambrian SPICE (δ13C) event and the Sauk II-Sauk III regression: new evidence from Laurentian basins in Utah, Iowa, and Newfoundland. J Sediment Res, 74( 3): 366– 377
CrossRef Google scholar
[44]
Saltzman M R,, Ripperdan R L,, Brasier M D,, Lohmann K C,, Robison R A,, Chang W T,, Peng S,, Ergaliev E K,, Runnegar B. ( 2000). A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeogr Palaeoclimatol Palaeoecol, 162( 3–4): 211– 223
CrossRef Google scholar
[45]
Saltzman M R,, Runnegar B,, Lohmann K C. ( 1998). Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: record of a global oceanographic event. Geol Soc Am Bull, 110( 3): 285– 297
CrossRef Google scholar
[46]
Schiffbauer J D,, Huntley J W,, Fike D A,, Jeffrey M J,, Gregg J M,, Shelton K L. ( 2017). Decoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event. Sci Adv, 3( 3): e1602158
CrossRef Pubmed Google scholar
[47]
Sim M S,, Ono S H,, Hurtgen M T. ( 2015). Sulfur isotope evidence for low and fluctuating sulfate levels in the Late Devonian ocean and the potential link with the mass extinction event. Earth Planet Sci Lett, 419: 52– 62
CrossRef Google scholar
[48]
Stitt J H. ( 1975). Adaptive radiation, trilobite paleoecology, and extinction, Ptychaspid biomere: Late Cambrian of Oklahoma. Fossils and Strata, 4: 381– 390
[49]
Taylor M E ( 1977). Late Cambrian of western North America: trilobite biofacies, environmental significance, and biostratigraphic implications. In: Kauffman E G, Hazel J E, eds. Concepts and Methods of Biostratigraphy. Stroudsburg: Dowden, Hutchinson and Ross, 397– 425
[50]
Thompson C K, Kah L C ( 2012). Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans. Palaeogeogr Palaeoclimatol Palaeoecol, 313–314: 189– 214
CrossRef Google scholar
[51]
Wang C, Li X, Bai Y, Liu A, Zeng X ( 2011). The Cambrian SPICE event in Yongshun area, Hunan Province, and its significance for stratigraphic correlation. Geol Chin, 38( 6): 1440– 1445 (in Chinese)
[52]
Woods M A,, Wilby P R,, Leng M J,, Rushton A W A,, Williams M. ( 2011). The Furongian (Late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia. J Geol Soc London, 168( 4): 851– 862
CrossRef Google scholar
[53]
Young S A,, Gill B C,, Edwards C T,, Saltzman M R,, Leslie S A. ( 2016). Middle–Late Ordovician (Darriwilian–Sandbian) decoupling of global sulfur and carbon cycles: isotopic evidence from eastern and southern Laurentia. Palaeogeogr Palaeoclimatol Palaeoecol, 458: 118– 132
CrossRef Google scholar
[54]
Zuo J, Peng S, Zhu X ( 2008 a). Carbon isotope composition of Cambrian carbonate rocks in Yangtze Platform, south China and its geological implications. Geochemica, 37( 2): 118– 128 (in Chinese)
[55]
Zuo J, Peng S, Zhu X, Qi Y, Lin H, Yang X ( 2008 b). Evolution of carbon isotope composition in potential global stratotype section and point at Luoyixi, south China, for the Base of the Unnamed Global Seventh Stage of Cambrian System. Earth Science 19( 1): 9– 22 (in Chinese)

Acknowledgments

We gratefully thank the editor and the reviewers for their valuable comments. Moreover, we specially acknowledge State Key Laboratory of Biogeology and Environmental Geology of China University of Geosciences for its support for experimental measurement. This study was jointly supported by the open fund of State Key Laboratory of Biogeology and Environmental Geology (No. GBL21506), the National Natural Science Foundation of China (Grant Nos. 42072140 and 42102133), Chongqing Natural Science Foundation of China (No. cstc2020jcyj msxmX0217), Science and Technology Research Program of Chongqing Municipal Education Commission (Nos. KJZD-M202101502 and KJQN202001517) and Chongqing University of Science and Technology (No. ckrc2019035).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(17041 KB)

Accesses

Citations

Detail

Sections
Recommended

/