Global and regional controls on carbon-sulfur isotope cycling during SPICE event in south China

Xianfeng TAN , Long LUO , Hongjin CHEN , Jon GLUYAS , Zihu ZHANG , Chensheng JIN , Lidan LEI , Jia WANG , Qing CHEN , Meng LI

Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (3) : 713 -726.

PDF (17041KB)
Front. Earth Sci. ›› 2023, Vol. 17 ›› Issue (3) : 713 -726. DOI: 10.1007/s11707-022-0987-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Global and regional controls on carbon-sulfur isotope cycling during SPICE event in south China

Author information +
History +
PDF (17041KB)

Abstract

The positive S-isotopic excursion of carbonate-associated sulfate (δ34SCAS) is generally in phase with the Steptoean positive carbon isotope excursion (SPICE), which may reflect widespread, global, transient increases in the burial of organic carbon and pyrite sulfate in sediments deposited under large-scale anoxic and sulphidic conditions. However, carbon-sulfur isotope cycling of the global SPICE event, which may be controlled by global and regional events, is still poorly understood, especially in south China. Therefore, the δ13CPDB, δ18OPDB,δ34SCAS, total carbon (TC), total organic carbon (TOC) and total sulfate (TS) of Cambrian carbonate of Waergang section of Hunan Province were analyzed to unravel global and regional controls on carbon-sulfur cycling during SPICE event in south China.

The δ34SCAS values in the onset and rising limb are not obviously higher than that in the preceding SPICE, meanwhile sulfate (δ34SCAS) isotope values increase slightly with increasing δ13CPDB in rising limb and near peak of SPICE (130–160 m). The sulfate (δ34SCAS) isotope values gradually decrease from 48.6‰ to 18‰ in the peak part of SPICE and even increase from 18‰ to 38.5% in the descending limb of SPICE. The abnormal asynchronous C-S isotope excursion during SPICE event in the south China was mainly controlled by the global events including sea level change and marine sulfate reduction, and it was also influenced by regional events such as enhanced siliciclastic provenance input (sulfate), weathering of a carbonate platform and sedimentary environment. Sedimentary environment and lithology are not the main reason for global SPICE event but influence the δ13CPDB excursion-amplitude of SPICE. Sea level eustacy and carbonate platform weathering probably made a major contribution to the δ13CPDB excursion during the SPICE, in particularly, near peak of SPICE. Besides, the trilobite extinctions, anoxia, organic-matter burial and siliciclastic provenance input also play an important role in the onset, early and late stage of SPICE event.

Graphical abstract

Keywords

sulfate isotope excursion / terrigenous matter / carbonate platform weathering / sea level change / transitional slope environment / Waergang section

Cite this article

Download citation ▾
Xianfeng TAN, Long LUO, Hongjin CHEN, Jon GLUYAS, Zihu ZHANG, Chensheng JIN, Lidan LEI, Jia WANG, Qing CHEN, Meng LI. Global and regional controls on carbon-sulfur isotope cycling during SPICE event in south China. Front. Earth Sci., 2023, 17(3): 713-726 DOI:10.1007/s11707-022-0987-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlberg P,, Axheimer N,, Babcock L E,, Eriksson M E,, Schmitz B,, Terfelt F. ( 2009). Cambrian high-resolution biostratigraphy and carbon isotope chemostratigraphy in Scania, Sweden: first record of the SPICE and DICE excursions in Scandinavia. Lethaia, 42( 1): 2– 16

[2]

Arthur M A,, Schlanger S O,, Jenkyns H. ( 1987). The Genomanian-Turonian oceanic anoxic event, II. Palaeoceanographic controls on organic-matter production and preservation. Spec Publ Geol Soc Lond, 26( 1): 401– 420

[3]

Bathurst R G C ( 1975). Carbonate Sediments and Their Diagenesis (2nd ed). Amsterdam: Elsevier

[4]

Chen Z,, Wang X,, Hu J,, Yang S,, Zhu M,, Dong X,, Tang Z,, Peng P,, Ding Z. ( 2014). Structure of the carbon isotope excursion in a high-resolution lacustrine Paleocene–Eocene Thermal Maximum record from central China. Earth Planet Sci Lett, 408: 331– 340

[5]

Chen Z,, Ding Z,, Yang S,, Zhang C,, Wang X. ( 2016). Increased precipitation and weathering across the Paleocene-Eocene Thermal Maximum in central China. Geochem Geophys Geosyst, 17( 6): 2286– 2297

[6]

Dahl T W,, Boyle R A,, Canfield D E,, Connelly J N,, Gill B C,, Lenton T M,, Bizzarro M. ( 2014). Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. Earth Planet Sci Lett, 401: 313– 326

[7]

Derry L A. ( 2010). On the significant of δ13C correlations in ancient sediments. Earth Planet Sci Lett, 296( 3–4): 497– 501

[8]

Elrick M,, Rieboldt S,, Saltzman M,, McKay R M. ( 2011). Oxygen-isotope trends and seawater temperature changes across the Late Cambrian Steptoean positive carbon-isotope excursion (SPICE event). Geology, 39( 10): 987– 990

[9]

Feng Z, Peng Y, Jin Z, Jiang P, Bao Z, Luo Z, Ju T, Tian H, Wang H ( 2001). Lithofacies palaeogeography of the Cambrian in South China. J Palaeogeogr, 3( 1): 1– 14 (in Chinese)

[10]

Feng Z, Peng Y, Jin Z, Jiang P, Bao Z ( 2002). Lithofacies palaeogeography of the Late Cambrian in China. J Palaeogeogr, 4( 3): 1– 10 (in Chinese)

[11]

Gill B C,, Lyons T W,, Saltzman M R. ( 2007). Parallel, high-resolution carbon and sulfur isotope records of the evolving Paleozoic marine sulfur reservoir. Palaeogeogr Palaeoclimatol Palaeoecol, 256( 3–4): 156– 173

[12]

Gill B C,, Lyons T W,, Frank T D. ( 2008). Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy. Geochim Cosmochim Acta, 72( 19): 4699– 4711

[13]

Gill B C,, Lyons T W,, Young S A,, Kump L R,, Knoll A H,, Saltzman M R. ( 2011a). Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature, 469( 7328): 80– 83

[14]

Gill B C,, Lyons T W,, Jenkyns H C. ( 2011b). A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth Planet Sci Lett, 312( 3–4): 484– 496

[15]

Holser W T, Schidlowski M, Mackenzie F T, Maynard J B ( 1988). Geochemical cycles of carbon and sulfur. In: Gregor C B, Garrels R M, Mackenzie F T, Maynard J B, eds. Chemical Cycles in the Evolution of the Earth. New York: Wiley, 105– 173

[16]

Hurtgen M,, Arthur M,, Suits N,, Kaufman A. ( 2002). The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for snowball Earth?. Earth Planet Sci Lett, 203( 1): 413– 429

[17]

Hurtgen M T,, Pruss S B,, Knoll A H. ( 2009). Evaluating the relationship between the carbon and sulfur cycles in the later Cambrian ocean: an example from the Port au Port Group, western Newfoundland, Canada. Earth Planet Sci Lett, 281( 3–4): 288– 297

[18]

Johnston D T,, Poulton S W,, Dehler C,, Porter S,, Husson J,, Canfield D E,, Knoll A H. ( 2010). An emerging picture of Neoproterozoic ocean chemistry: insights from the Chuar Group, Grand Canyon, USA. Earth Planet Sci Lett, 290( 1–2): 64– 73

[19]

Knauth L P,, Kennedy M J. ( 2009). The late Precambrian greening of the Earth. Nature, 460( 7256): 728– 732

[20]

Kump L R,, Arthur M A,, Patzkowsky M E,, Gibbs M T,, Pinkus D S,, Sheehan P M. ( 1999). A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol, 152( 1–2): 173– 187

[21]

Kump L R,, Arthur M A. ( 1999). Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol, 111: 299– 302

[22]

Li C,, Cheng M,, Algeo T J,, Xie S C. ( 2015). A theoretical prediction of chemical zonation in early oceans (>520 Ma). Sci China Earth Sci, 58( 11): 1901– 1909

[23]

Li C,, Jin C,, Planavsky N J,, Algeo T J,, Cheng M,, Yang X,, Zhao Y,, Xie S. ( 2017). Coupled oceanic oxygenation and metazoan diversification during the early–middle Cambrian?. Geology, 45( 8): 743– 746

[24]

Li D ( 2017). The interplay between Cambrian ocean chemistry changes and early animal evolution. Dissertation for the Doctoral Degree. Hefei: University of Science and Technology of China (in Chinese)

[25]

Liang W, Mou C, Zhou K, Ge X, Chen C, Xu P ( 2015). Palaeogeography of the Cambrian Epoch 3-Furongian in the Middle and Upper Yangtze region. J Palaeogeogr, 17( 2): 172– 185 (in Chinese)

[26]

Liu Y,, Li C,, Algeo T J,, Fan J,, Peng P. ( 2016). Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in south China. Palaeogeogr Palaeoclimatol Palaeoecol, 463: 180– 191

[27]

Lochman-Balk C. ( 1970). Upper Cambrian faunal patterns on the craton. Geol Soc Am Bull, 81( 11): 3197– 3224

[28]

Öpik A A. ( 1966). The early Upper Cambrian crisis and its Petrocorrelation. J Proc R Soc N S W, 100: 9– 14

[29]

Palmer A R. ( 1965). Trilobites of the Late Cambrian Pterocephaliid Biomere in the Great Basin, United States. US Geol Surv Prof Pap, 493: 49– 49

[30]

Palmer A R. ( 1984). The biomere problem: evolution of an idea. J Paleontol, 58: 599– 611

[31]

Paul C R C,, Mitchell S F. ( 1994). Is famine a common factor in marine mass extinctions?. Geology, 22( 8): 679– 682

[32]

Peng S. ( 1992). Upper Cambrian biostratigraphy and trilobite faunas of the Cili-Taoyuan area, northwestern Hunan, China. Memoir of the Association Australasian Palaeontologists, 13: 1– 119

[33]

Peng S ( 1990). The Upper Cambrian and trilobite succession in the Taoyuan-Cili area of Hunan Province. J Stratigraphy, 14( 4): 261– 276 (in Chinese)

[34]

Peng S,, Babcock L E,, Robison R A,, Lin H,, Rees M N,, Saltzman M R. ( 2004a). Global Standard Stratotype-section and Point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia, 37( 4): 365– 379

[35]

Peng S, Babcock L E, Lin H, Chen Y, Zhu X, Qi Y ( 2004b). The Paibi Section in Hunan, n orthwestern Hunan: a global standard stratotype – section and point for Cambrian Furongian series and Paibi stage. Collection of Papers on Stratigraphic Paleontology, 28: 11– 25 (in Chinese)

[36]

Peng S, Zhu X, Lin H ( 2004c). The first global standard stratotype section and poin t of Cambrian System for Paibian Stage and Furongian Series in China. J Stratigraphy, 28( 1): 92– 94 (in Chinese)

[37]

Peng S,, Robison R A. ( 2000). Agnostoid biostratigraphy across the Middle-Upper Cambrian boundary in Hunan, China. J Paleontol, 74( sp53): 1– 10

[38]

Peng S ( 2009). The newly-developed Cambrian biostratigraphic succession and chronostratigraphic scheme for s outh China. Chin Sci Bull, 54( 18): 2691– 2698 (in Chinese)

[39]

Peng Y,, Peng Y,, Lang X,, Ma H,, Huang K,, Li F,, Shen B. ( 2016). Marine carbon-sulfur biogeochemical cycles during the Steptoean Positive Carbon Isotope Excursion (SPICE) in the Jiangnan Basin, south China. J Earth Sci, 27( 2): 242– 254

[40]

Poulson S R,, John B E. ( 2003). Stable isotope and trace element geochemistry of the basal Bouse Formation carbonate, southwestern United States: implications for the Pliocene uplift history of the Colorado Plateau. Geol Soc Am Bull, 115: 434– 444

[41]

Qi Y, Wang Z, Bagnoli G ( 2004). Conodont b iostratigraphy of the GSSP OF the b ase of the Furongian Series and Paibi Stage. J Stratigraphy, 28( 2): 114– 119 (in Chinese)

[42]

Runnegar B,, Saltzman M R,, Kouchinsky A,, Young S A,, Kump L R,, Gill B,, Lyons T,, Young E D. ( 2010). Cambrian SPICE (Steptoean Positive Carbon Isotope Excursion) as a model for Comparable Proterozoic high-amplitude isotopic events. GSA Abstracts with Programs, 42( 5): 398

[43]

Saltzman M R,, Cowan C A,, Runkel A C,, Runnegar B,, Stewart M C,, Palmer A R. ( 2004). The Late Cambrian SPICE (δ13C) event and the Sauk II-Sauk III regression: new evidence from Laurentian basins in Utah, Iowa, and Newfoundland. J Sediment Res, 74( 3): 366– 377

[44]

Saltzman M R,, Ripperdan R L,, Brasier M D,, Lohmann K C,, Robison R A,, Chang W T,, Peng S,, Ergaliev E K,, Runnegar B. ( 2000). A global carbon isotope excursion (SPICE) during the Late Cambrian: relation to trilobite extinctions, organic-matter burial and sea level. Palaeogeogr Palaeoclimatol Palaeoecol, 162( 3–4): 211– 223

[45]

Saltzman M R,, Runnegar B,, Lohmann K C. ( 1998). Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: record of a global oceanographic event. Geol Soc Am Bull, 110( 3): 285– 297

[46]

Schiffbauer J D,, Huntley J W,, Fike D A,, Jeffrey M J,, Gregg J M,, Shelton K L. ( 2017). Decoupling biogeochemical records, extinction, and environmental change during the Cambrian SPICE event. Sci Adv, 3( 3): e1602158

[47]

Sim M S,, Ono S H,, Hurtgen M T. ( 2015). Sulfur isotope evidence for low and fluctuating sulfate levels in the Late Devonian ocean and the potential link with the mass extinction event. Earth Planet Sci Lett, 419: 52– 62

[48]

Stitt J H. ( 1975). Adaptive radiation, trilobite paleoecology, and extinction, Ptychaspid biomere: Late Cambrian of Oklahoma. Fossils and Strata, 4: 381– 390

[49]

Taylor M E ( 1977). Late Cambrian of western North America: trilobite biofacies, environmental significance, and biostratigraphic implications. In: Kauffman E G, Hazel J E, eds. Concepts and Methods of Biostratigraphy. Stroudsburg: Dowden, Hutchinson and Ross, 397– 425

[50]

Thompson C K, Kah L C ( 2012). Sulfur isotope evidence for widespread euxinia and a fluctuating oxycline in Early to Middle Ordovician greenhouse oceans. Palaeogeogr Palaeoclimatol Palaeoecol, 313–314: 189– 214

[51]

Wang C, Li X, Bai Y, Liu A, Zeng X ( 2011). The Cambrian SPICE event in Yongshun area, Hunan Province, and its significance for stratigraphic correlation. Geol Chin, 38( 6): 1440– 1445 (in Chinese)

[52]

Woods M A,, Wilby P R,, Leng M J,, Rushton A W A,, Williams M. ( 2011). The Furongian (Late Cambrian) Steptoean Positive Carbon Isotope Excursion (SPICE) in Avalonia. J Geol Soc London, 168( 4): 851– 862

[53]

Young S A,, Gill B C,, Edwards C T,, Saltzman M R,, Leslie S A. ( 2016). Middle–Late Ordovician (Darriwilian–Sandbian) decoupling of global sulfur and carbon cycles: isotopic evidence from eastern and southern Laurentia. Palaeogeogr Palaeoclimatol Palaeoecol, 458: 118– 132

[54]

Zuo J, Peng S, Zhu X ( 2008 a). Carbon isotope composition of Cambrian carbonate rocks in Yangtze Platform, south China and its geological implications. Geochemica, 37( 2): 118– 128 (in Chinese)

[55]

Zuo J, Peng S, Zhu X, Qi Y, Lin H, Yang X ( 2008 b). Evolution of carbon isotope composition in potential global stratotype section and point at Luoyixi, south China, for the Base of the Unnamed Global Seventh Stage of Cambrian System. Earth Science 19( 1): 9– 22 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (17041KB)

1781

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/