Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

Lijun WANG, Wendong TAO, Richard C. SMARDON, Xue XU, Xinwei LU

PDF(350 KB)
PDF(350 KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (2) : 397-407. DOI: 10.1007/s11707-017-0658-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

Author information +
History +

Abstract

Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%)>Cd (53.54%)>>Ni (23.36%)>Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soil-forming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

Keywords

heavy metal / speciation / source / pollution level / ecological risk / vegetable garden soil

Cite this article

Download citation ▾
Lijun WANG, Wendong TAO, Richard C. SMARDON, Xue XU, Xinwei LU. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China. Front. Earth Sci., 2018, 12(2): 397‒407 https://doi.org/10.1007/s11707-017-0658-8

References

[1]
Botsou F, Sungur A, Kelepertzis E, Soylak M (2016). Insights into the chemical partitioning of trace metals in road side and off-road agricultural soils along two major highways in Attica’s region, Greece. Ecotoxicol Environ Saf, 132: 101–110
CrossRef Google scholar
[2]
Cai L M, Xu Z C, Bao P, He M, Dou L, Chen L G, Zhou Y, Zhu Y G (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. J Geochem Explor, 148: 189–195
CrossRef Google scholar
[3]
Cai Q Y, Mo C H, Li Y H, Zeng Q Y, Wang B G, Xiao K E, Li H Q, Xu G S (2005). The study of PAEs in soils from typical vegetable fields in areas of Guangzhou and Shenzhen, South China. Acta Ecol Sin, 25: 283–288 (in Chinese)
[4]
Chen T B, Wong J W C, Zhou H Y, Wong M H (1997). Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environ Pollut, 96(1): 61–68
CrossRef Google scholar
[5]
Chen T B, Zheng Y M, Lei M, Huang Z C, Wu H T, Chen H, Fan K K, Yu K, Wu X, Tian Q Z (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4): 542–551
CrossRef Google scholar
[6]
Chen T, Liu X M, Li X, Zhao K L, Zhang J B, Xu J M, Shi J C, Dahlgren R A (2009). Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou, China. Environ Pollut, 157(3): 1003–1010
CrossRef Google scholar
[7]
Chen T, Liu X M, Zhu M Z, Zhao K L, Wu J J, Xu J M, Huang P M (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China. Environ Pollut, 151(1): 67–78
CrossRef Google scholar
[8]
Chen Y, Huang B, Hu W Y, Weindorf D C, Liu X X, Yang L Q (2014). Accumulation and ecological effects of soil heavy metals in conventional and organic greenhouse vegetable production systems in Nanjing, China. Environ Earth Sci, 71(8): 3605–3616
CrossRef Google scholar
[9]
China National Environmental Monitoring Center (1990). Soil Element Background Values of China.Beijing: Environmental Science Press of China, 15–505 (in Chinese)
[10]
Cui X, Sun X L, Hu P J, Yuan C, Luo Y M, Wu L H, Christie P (2015). Concentrations of heavy metals in suburban horticultural soils and their uptake by Artemisia selengensis. Pedosphere, 25(6): 878–887
CrossRef Google scholar
[11]
Divrikli U, Saracoglu S, Soylak M, Elci L (2003). Determination of trace heavy metal contents of green vegetable samples from Kayseri-Turkey by flame atomic absorption spectrometry. Fresenius Environ Bull, 12: 1123–1125
[12]
Håkanson L (1980). An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res, 14(8): 975–1001
CrossRef Google scholar
[13]
Huang S S, Liao Q L, Hua M, Wu X M, Bi K S, Yan C Y, Chen B, Zhang X Y (2007). Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere, 67(11): 2148–2155
CrossRef Google scholar
[14]
Irabien M J, Velasco F (1999). Heavy metals in Oka River sediments (Urdaibai National Biosphere Reserve, Northern Span): lithogenic and anthropogenic effects. Environmental Geology, 37(1‒2): 54–63
CrossRef Google scholar
[15]
Janoš P, Vávrová J, Herzogová L, Pilařová V (2010). Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: a sequential extraction study. Geoderma, 159(3–4): 335–341
CrossRef Google scholar
[16]
Kelepertzis E (2014). Accumulation of heavy metals in agricultural soils of Mediterranean: insights from Argolida basin, Peloponnese, Greece. Geoderma, 221 ‒ 222: 82–90
CrossRef Google scholar
[17]
Li P Z, Lin C Y, Cheng H G, Duan X L, Lei K (2015). Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol Environ Saf, 113: 391–399
CrossRef Google scholar
[18]
Li X D, Thornton I (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl Geochem, 16(15): 1693–1706
CrossRef Google scholar
[19]
Liu G N, Tao L, Liu X H, Hou J, Wang A J, Li R P (2013). Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. J Geochem Explor, 132: 156–163
CrossRef Google scholar
[20]
Liu P, Zhao H J, Wang L L, Liu Z H, Wei J L, Wang Y Q, Jiang L H, Dong L, Zhang Y F (2011). Analysis of heavy metal sources for vegetable soils from Shandong Province, China. Agric Sci China, 10(1): 109–119
CrossRef Google scholar
[21]
Liu Y, Wang H F, Li X T, Li J C (2015). Heavy metal contamination of agricultural soils in Taiyuan, China. Pedosphere, 25(6): 901–909
CrossRef Google scholar
[22]
Lu A X, Wang J H, Qin X Y, Wang K Y, Han P, Zhang S Z (2012). Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Sci Total Environ, 425: 66–74
CrossRef Google scholar
[23]
Lu S G, Bai S Q (2006). Study on the correlation of magnetic properties and heavy metals content in urban soils of Hangzhou City, China. J Appl Geophys, 60(1): 1–12
CrossRef Google scholar
[24]
Lu X W, Li L Y, Wang L J, Lei K, Huang J, Zhai Y X (2009). Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos Environ, 43(15): 2489–2496
CrossRef Google scholar
[25]
Lu X W, Wang L J, Li L Y, Lei K, Huang L, Kang D (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater, 173(1–3): 744–749
CrossRef Google scholar
[26]
Lu Y, Gong Z T, Zhang G L, Burghardt W (2003). Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma, 115(1–2): 101–111
CrossRef Google scholar
[27]
Lu Y, Zhu F, Chen J, Gan H H, Guo Y B (2007). Chemical fractionation of heavy metals in urban soil of Guangzhou, China. Environ Monit Assess, 134(1–3): 429–439
CrossRef Google scholar
[28]
Ma J H, Wang X Y, Hou Q, Duan H J (2011). Pollution and potential ecological risk of heavy metals in surface dust on urban kindergartens. Geogr Res, 30: 486–495 (in Chinese)
[29]
Marin I, Soylak M, Dogan M (1997). Traffic pollution in Nigde-Turkiye: investigation of trace element contents of soil samples. Fresenius Environ Bull, 6: 749–752
[30]
Nicholson F A, Smith S R, Alloway B J, Carlton-Smith C, Chambers B J (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ, 311(1–3): 205–219
CrossRef Google scholar
[31]
Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J Environ Manage, 90(2): 1106–1116
CrossRef Google scholar
[32]
State Environmental Protection Administration of China (1995). Chinese Environmental Quality Standard for Soils (GB 15618-1955).http://kjs.mep.gov.cn/hjbhbz/bzwb/trhj/trhjzlbz/199603/W020070313485587994018.pdf.
[33]
Stigliani W M, Doelman P, Salomons W, Schulin R, Smidt G R B, Van der Zee S E A T M (1991). Chemical time bombs-predicting the unpredictable. Environment, 33(4): 4–30
CrossRef Google scholar
[34]
Sun C Y, Liu J S, Wang Y, Sun L Q, Yu H W (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92(5): 517–523
CrossRef Google scholar
[35]
Sun Y B, Zhou Q X, Xie X H, Liu R (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shengyang, China. J Hazard Mater, 174(1–3): 455–462
CrossRef Google scholar
[36]
Sungur A, Soylak M, Yilmaz E, Yilmaz S, Ozcan H (2015). Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: the relationship between soil properties and heavy metal fractions. Soil Sediment Contam, 24(1): 1–15
CrossRef Google scholar
[37]
Tian K, Hu W Y, Xing Z, Huang B, Jia M M, Wan M X (2016). Determination and evaluation of heavy metals in soils under two different greenhouse vegetable production systems in eastern China. Chemosphere, 165: 555–563
CrossRef Google scholar
[38]
Wang L J, Lu X W, Li L Y, Ren C H, Luo D C, Chen J H (2015). Content, speciation and pollution assessment of Cu, Pb and Zn in soil around the lead-zinc smelting plant of Baoji, NW China. Environ Earth Sci, 73(9): 5281–5288
CrossRef Google scholar
[39]
Wang L J, Lu X W, Ren C H, Li X X, Chen C C (2014). Contamination assessment and health risk of heavy metals in dust from Changqing industrial park of Baoji, NW China. Environ Earth Sci, 71(5): 2095–2104
CrossRef Google scholar
[40]
Wang L J, Wang L, Tao W D, Smardon R C, Shi X M, Lu X W (2016). Characteristics, sources, and health risk of polycyclic aromatic hydrocarbons in urban surface dust: a case study of the city of Xi’an in Northwest China. Environ Sci Pollut Res Int, 23(13): 13389–13402
CrossRef Google scholar
[41]
Williams C H, David D G (1973). The effect of superphosphate on the cadmium content of soils and plants. Aust J Soil Res, 11(1): 43–56
CrossRef Google scholar
[42]
Wong S C, Li X D, Zhang G, Qi S H, Min Y S (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut, 119(1): 33–44
CrossRef Google scholar
[43]
Xu X H, Zhao Y C, Zhao X Y, Wang Y D, Deng W J (2014). Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxicol Environ Saf, 108: 161–167
CrossRef Google scholar
[44]
Xu Z Q, Ni S J, Tuo X G, Zhang C J (2008). Calculation of heavy metals’ toxicity coefficient in evaluation of potential ecological risk index. Environ Sci Technol, 31: 112–115 (in Chinese)
[45]
Yang H L, He M C, Wang X Q (2015). Concentration and speciation of antimony and arsenic in soil profiles around the world’s largest antimony metallurgical area in China. Environ Geochem Health, 37(1): 21–33
CrossRef Google scholar
[46]
Yang Z P, Lu W X, Long YQ, Bao X H, Yang Q C (2011). Assessment of heavy metals contamination in urban topsoil from Changchun city, China. Journal of Geochemical and Explore, 108: 27–38
CrossRef Google scholar
[47]
Yaylalı-Abanuz G (2011). Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchem J, 99(1): 82–92
CrossRef Google scholar
[48]
Ye X Z, Xiao W D, Zhang Y Z, Zhao S P, Wang G J, Zhang Q, Wang Q (2015). Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Environ Monit Assess, 187(378): 1–9
[49]
Zhao Y F, Shi X Z, Huang B, Yu D S, Wang H J, Sun W X, Oboern I, Blomback K (2007). Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere, 17(1): 44–51
CrossRef Google scholar

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 41471420 and 41271510), the Natural Science Foundation of Shaanxi Province (2014JM5208), and the Fundamental Research Funds for the Central University (GK201701010 and GK201601009).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(350 KB)

Accesses

Citations

Detail

Sections
Recommended

/