New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process

Yuxiang ZHANG, Zhigang ZENG, Shuai CHEN, Xiaoyuan WANG, Xuebo YIN

PDF(2603 KB)
PDF(2603 KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (2) : 325-338. DOI: 10.1007/s11707-017-0638-z
RESEARCH ARTICLE

New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process

Author information +
History +

Abstract

In the middle Okinawa Trough (MOT), rhyolites have been typically considered as products of crystallization differentiation of basaltic magma as a feature of bimodal volcanism. However, the evidence is insufficient. This paper compared chemical trends of volcanic rocks from the MOT with fractional crystallization simulation models and experimental results and utilized trace element modeling combined with Rayleigh fractionation calculations to re-examine fractional crystallization processes in generating rhyolites. Both qualitative and quantitative studies indicate that andesites, rather than rhyolites, originate by fractional crystallization from basalts in the MOT. Furthermore, we established two batch-melting models for the MOT rhyolites and proposed that type 1 rhyolites are produced by remelting of andesites with amphiboles in the residue, while type 2 rhyolites are derived from remelting of andesites without residual amphiboles. It is difficult to produce melts with a SiO2 content ranging from 62% to 68% either by magmatic differentiation from basalts or by remelting of andesites, and this difficulty might help account for the compositional gap (Daly gap) for bimodal volcanism in the Okinawa Trough.

Keywords

Okinawa Trough / rhyolite / andesite / remelting / fractional crystallization

Cite this article

Download citation ▾
Yuxiang ZHANG, Zhigang ZENG, Shuai CHEN, Xiaoyuan WANG, Xuebo YIN. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process. Front. Earth Sci., 2018, 12(2): 325‒338 https://doi.org/10.1007/s11707-017-0638-z

References

[1]
Allègre C J, Minster J F (1978). Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett, 38(1): 1–25
CrossRef Google scholar
[2]
Almeev R R, Holtz F, Ariskin A A, Kimura J I (2013). Storage conditions of Bezymianny Volcano parental magmas: results of phase equilibria experiments at 100 and 700 MPa. Contrib Mineral Petrol, 166(5): 1389–1414
CrossRef Google scholar
[3]
Aoki K I (1971). Petrology of mafic inclusions from Itinome-gata, Japan. Contrib Mineral Petrol, 30(4): 314–331
CrossRef Google scholar
[4]
Arculus R J, Wills K J A (1980). The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol, 21(4): 743–799
CrossRef Google scholar
[5]
Baker B H, Goles G G, Leeman W P, Lindstrom M M (1977). Geochemistry and petrogenesis of a basalt-benmoreite-trachyte suite from the southern part of the Gregory Rift, Kenya. Contrib Mineral Petrol, 64(3): 303–332
CrossRef Google scholar
[6]
Beard J S, Lofgren G E (1991). Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol, 32(2): 365–401
CrossRef Google scholar
[7]
Blatter D L, Sisson T W, Hankins W B (2013). Crystallization of oxidized, moderately hydrous arc basalt at mid-to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol, 166(3): 861–886
CrossRef Google scholar
[8]
Bonnefoi C C, Provost A, Albarede F (1995). The ‘Daly gap’ as a magmatic catastrophe. Nature, 378(6554): 270–272
CrossRef Google scholar
[9]
Bouvier A, Vervoort J D, Patchett P J (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett, 273(1): 48–57
CrossRef Google scholar
[10]
Brophy J G (1991). Composition gaps, critical crystallinity, and fractional crystallization in orogenic (calc-alkaline) magmatic systems. Contrib Mineral Petrol, 109(2): 173–182
CrossRef Google scholar
[11]
Charlier B, Namur O, Toplis M J, Schiano P, Cluzel N, Higgins M D, Auwera J V (2011). Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology, 39(10): 907–910
CrossRef Google scholar
[12]
Christensen N I (1978). Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics, 47(1): 131–157
CrossRef Google scholar
[13]
Chung S L, Wang S L, Shinjo R, Lee C S, Chen C H (2000). Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terra Nova, 12(5): 225–230
CrossRef Google scholar
[14]
Dalpé C, Baker D R (2000). Experimental investigation of large-ion-lithophile-element-, high-field-strength-element- and rare-earth-element- partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib Mineral Petrol, 140(2): 233–250
CrossRef Google scholar
[15]
Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007). Amphibole “sponge” in arc crust? Geology, 35(9): 787–790
CrossRef Google scholar
[16]
DeBari S M, Coleman R G (1989). Examination of the deep levels of an island arc: evidence from the Tonsina Ultramafic-Mafic Assemblage, Tonsina, Alaska. J Geophys Res Solid Earth, 94(B4): 4373–4391
CrossRef Google scholar
[17]
DePaolo D J, Wasserburg G J (1976). Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys Res Lett, 3(12): 743–746
CrossRef Google scholar
[18]
Dufek J, Bachmann O (2010). Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology, 38(8): 687–690
CrossRef Google scholar
[19]
Espinoza F, Morata D, Polvé M, Lagabrielle Y, Maury R C, Guivel C, Cotten J, Bellon H, Suárez M (2008). Bimodal back-arc alkaline magmatism after ridge subduction: Pliocene felsic rocks from Central Patagonia (47°S). Lithos, 101(3): 191–217
CrossRef Google scholar
[20]
Fabbri O, Monié P, Fournier M (2004). Transtensional deformation at the junction between the Okinawa trough back-arc basin and the SW Japan island arc. Geol Soc Lond Spec Publ, 227(1): 297–312
CrossRef Google scholar
[21]
Furukawa M, Kondo S, Miki M, Isezaki N (1991). Report on DELP 1988 Cruises in the Okinawa Trough: Part 5. Measurement of the three components and total intensity of the geomagnetic field in the Okinawa Trough. Bull Earthq Res Inst Univ Tokyo, 66: 91–150
[22]
Garrido C J, Bodinier J L, Burg J P, Zeilinger G, Hussain S S, Dawood H, Chaudhry M N, Gervilla F (2006). Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (Northern Pakistan): implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol, 47(10): 1873–1914
CrossRef Google scholar
[23]
Green T H, Ringwood A E (1967). Crystallization of basalt and andesite under high pressure hydrous conditions. Earth Planet Sci Lett, 3: 481–489
CrossRef Google scholar
[24]
Greene A R, Debari S M, Kelemen P B, Blusztajn J, Clift P D (2006). A detailed geochemical study of island arc crust: the Talkeetna arc section, South–Central Alaska. J Petrol, 47(6): 1051–1093
CrossRef Google scholar
[25]
Grove T L, Baker M B (1984). Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res Solid Earth, 89(B5): 3253–3274
CrossRef Google scholar
[26]
Grove T L, Donnelly-Nolan J M (1986). The evolution of young silicic lavas at Medicine Lake Volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contrib Mineral Petrol, 92(3): 281–302
CrossRef Google scholar
[27]
Grove T L, Elkins-Tanton L T, Parman S W, Chatterjee N, Müntener O, Gaetani G A (2003). Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol, 145(5): 515–533
CrossRef Google scholar
[28]
Guo P, Xu W L, Yu J J, Wang F, Tang J, Li Y (2016). Geochronology and geochemistry of Late Triassic bimodal igneous rocks at the eastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China: petrogenesis and tectonic implications. Int Geol Rev, 58(2): 196–215
CrossRef Google scholar
[29]
Hamada M, Fujii T (2008). Experimental constraints on the effects of pressure and H2O on the fractional crystallization of high-Mg island arc basalt. Contrib Mineral Petrol, 155(6): 767–790
CrossRef Google scholar
[30]
Hildreth W (2004). Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm Res, 136(3): 169–198
CrossRef Google scholar
[31]
Hirata N, Kinoshita H, Katao H, Baba H, Kaiho Y, Koresawa S, Ono Y, Hayashi K (1991). Report on DELP 1988 cruises in the Okinawa Trough: Part 3. Crustal structure of the southern Okinawa Trough. Bull Earthq Res Inst Univ Tokyo, 66: 37–70
[32]
Hochstaedter A G, Gill J B, Kusakabe M, Newman S, Pringle M, Taylor B, Fryer P (1990). Volcanism in the Sumisu Rift, I. Major element, volatile, and stable isotope geochemistry. Earth Planet Sci Lett, 100(1): 179–194
CrossRef Google scholar
[33]
Hofmann A W, Feigenson M D (1983). Case studies on the origin of basalt. Contrib Mineral Petrol, 84(4): 382–389
CrossRef Google scholar
[34]
Honma H, Kusakabe M, Kagami H, Iizumi S, Sakai H, Kodama Y, Kimura M (1991). Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin. Geochem J, 25(2): 121–136
CrossRef Google scholar
[35]
Huang P, Li A C, Jiang H Y (2006). Geochemical features and their geological implications of volcanic rocks from the northern and middle Okinawa Trough. Acta Petrologica Sinica, 22(6): 1703–1712 (in Chinese)
[36]
Ishikawa M, Sato H, Furukawa M, Kimura M, Kato Y, Tsugaru R, Shimamura K (1991). Report on DELP 1988 cruises in the Okinawa Trough: Part 6. Petrology of volcanic rocks. Bull Earthq Res Inst Univ Tokyo, 66: 151–177
[37]
Ishizuka H, Kawanobe Y, Sakai H (1990). Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough, an active back-arc basin. Geochem J, 24(2): 75–92
CrossRef Google scholar
[38]
Iwasaki T, Hirata N, Kanazawa T, Melles J, Suyehiro K, Urabe T, Möller L, Makris J, Shimamura H (1990). Crustal and upper mantle structure in the Ryukyu Island Arc deduced from deep seismic sounding. Geophys J Int, 102(3): 631–651
CrossRef Google scholar
[39]
Jagoutz O, Müntener O, Burg J P, Ulmer P, Jagoutz E (2006). Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet Sci Lett, 242(3): 320–342
CrossRef Google scholar
[40]
Johnson K T (1998). Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol, 133(1–2): 60–68
CrossRef Google scholar
[41]
Jones W B (1979). Mixed benmoreite/trachyte flows from Kenya and their bearing on the Daly gap. Geol Mag, 116(6): 487–489
CrossRef Google scholar
[42]
Kawamoto T (1996). Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett, 144(3): 577–589
CrossRef Google scholar
[43]
Kimura M (1985). Back-arc rifting in the Okinawa Trough. Mar Pet Geol, 2(3): 222–240
CrossRef Google scholar
[44]
Lacasse C, Sigurdsson H, Carey S N, Jóhannesson H, Thomas L E, Rogers N W (2007). Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcanol, 69(4): 373–399
CrossRef Google scholar
[45]
Langmuir C H, Vocke R D Jr, Hanson G N, Hart S R (1978). A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett, 37(3): 380–392
CrossRef Google scholar
[46]
Lee C S, Shor G G Jr, Bibee L D, Lu R S, Hilde T W C (1980). Okinawa Trough: origin of a back-arc basin. Mar Geol, 35(1): 219–241
CrossRef Google scholar
[47]
Letouzey J, Kimura M (1985). Okinawa Trough genesis: structure and evolution of a backarc basin developed in a continent. Mar Pet Geol, 2(2): 111–130
CrossRef Google scholar
[48]
Letouzey J, Kimura M (1986). The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics, 125(1): 209–230
CrossRef Google scholar
[49]
Li W R, Yang Z S, Wang Y J (1997). The petrochemical features of the volcanic rocks in Okinawa Trough and their geological significance. Acta Petrologica Sinica, 13(4): 538–550 (in Chinese)
[50]
Li W X, Li X H, Li Z X (2005a). Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Res, 136(1): 51–66
CrossRef Google scholar
[51]
Li X H, Qi C S, Liu Y, Liang X R, Tu X L, Xie L W, Yang Y H (2005b). Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: new constraints from Hf isotopes and Fe/Mn ratios. Chin Sci Bull, 50(21): 2481–2486
CrossRef Google scholar
[52]
Luo W J, Hou T, Santosh M, Wen S H, Zhang Z C (2013). Petrogenesis of Early Cretaceous bimodal volcanic rocks in the Fanchang Basin, SE China: an energy-constrained assimilation–fractional crystallization model. Int Geol Rev, 55(8): 917–940
CrossRef Google scholar
[53]
Ma W L, Wang X L, Jin X L (2004). Areal difference of middle and southern basalts from the Okinawa Trough and its genesis study. Acta Geol Sin, 78(6): 758–769 (in Chinese)
[54]
Mahoney J B (2005). Nd and Sr isotopic signatures of fine-grained clastic sediments: a case study of western Pacific marginal basins. Sediment Geol, 182(1): 183–199
CrossRef Google scholar
[55]
McDonough W F, Sun S S (1995). The composition of the Earth. Chem Geol, 120(3): 223–253
CrossRef Google scholar
[56]
McKenzie D, O’Nions R K (1991). Partial melt distributions from inversion of rare earth element concentrations. J Petrol, 32(5): 1021–1091
CrossRef Google scholar
[57]
Melekhova E, Annen C, Blundy J (2013). Compositional gaps in igneous rock suites controlled by magma system heat and water content. Nat Geosci, 6(5): 385–390
CrossRef Google scholar
[58]
Meng X W, Du D W, Wu J L, Long J (1999). Sr-Nd isotopic geochemistry and its geological significances of volcanic rock series from the middle part of Okinawa Trough. Sci China Earth Sci, 29(4): 367–371 (Series D)
[59]
Miller C F, Watson E B, Harrison T M (1988). Perspectives on the source, segregation and transport of granitoid magmas. Trans R Soc Edinb Earth Sci, 79(2–3): 135–156
CrossRef Google scholar
[60]
Minster J F, Allègre C J (1978). Systematic use of trace elements in igneous processes. Contrib Mineral Petrol, 68(1): 37–52
CrossRef Google scholar
[61]
Miyashiro A (1974). Volcanic rock series in island arcs and active continental margins. Am J Sci, 274(4): 321–355
CrossRef Google scholar
[62]
Müntener O, Kelemen P B, Grove T L (2001). The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol, 141(6): 643–658
CrossRef Google scholar
[63]
Nakada S, Kamata H (1991). Temporal change in chemistry of magma source under Central Kyushu, Southwest Japan: progressive contamination of mantle wedge. Bull Volcanol, 53(3): 182–194
CrossRef Google scholar
[64]
Nakamura E, Campbell I H, Sun S S (1985). The influence of subduction processes on the geochemistry of Japanese alkaline basalts. Nature, 316(6023): 55–58
CrossRef Google scholar
[65]
Nandedkar R H, Ulmer P, Müntener O (2014). Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol, 167(6): 1015
CrossRef Google scholar
[66]
Otamendi J E, Ducea M N, Bergantz G W (2012). Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian arc, Argentina. J Petrol, 53(4): 761–800
CrossRef Google scholar
[67]
Patiño Douce A E (1997). Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743–746
CrossRef Google scholar
[68]
Peccerillo A, Barberio M R, Yirgu G, Ayalew D, Barbieri M, Wu T W (2003). Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol, 44(11): 2003–2032
CrossRef Google scholar
[69]
Peccerillo A, Taylor S R (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol, 58(1): 63–81
CrossRef Google scholar
[70]
Pichavant M, Macdonald R (2007). Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol, 154(5): 535–558
CrossRef Google scholar
[71]
Rapp R P, Watson E B (1995). Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol, 36(4): 891–931
CrossRef Google scholar
[72]
Rapp R P, Watson E B, Miller C F (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 51(1): 1–25
CrossRef Google scholar
[73]
Reubi O, Blundy J (2009). A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461(7268): 1269–1273
CrossRef Google scholar
[74]
Rollinson H R (1993). Using geochemical data: evaluation, presentation, interpretation. London: Longman Scientific and Technical, 108–111
[75]
Schiano P, Monzier M, Eissen J P, Martin H, Koga K T (2010). Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol, 160(2): 297–312
CrossRef Google scholar
[76]
Seno T, Maruyama S (1984). Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102(1): 53–84
CrossRef Google scholar
[77]
Seno T, Stein S, Gripp A E (1993). A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. J Geophys Res Solid Earth, 98(B10): 17941–17948
CrossRef Google scholar
[78]
Shinjo R, Chung S L, Kato Y, Kimura M (1999). Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. J Geophys Res Solid Earth, 104(B5): 10591–10608
CrossRef Google scholar
[79]
Shinjo R, Kato Y (2000). Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3): 117–137
CrossRef Google scholar
[80]
Shukuno H, Tamura Y, Tani K, Chang Q, Suzuki T, Fiske R (2006). Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu–Bonin arc, Japan. J Volcanol Geotherm Res, 156(3): 187–216
CrossRef Google scholar
[81]
Sibuet J C, Deffontaines B, Hsu S K, Thareau N, Le Formal J P, Liu C S (1998). Okinawa trough backarc basin: early tectonic and magmatic evolution. J Geophys Res Solid Earth, 103(B12): 30245–30267
CrossRef Google scholar
[82]
Sibuet J C, Hsu S K, Shyu C T, Liu C S (1995). Structural and kinematic evolutions of the Okinawa Trough backarc basin. In: Taylor B, ed. Back Arc Basins. New York: Plenum Press, 343–379
[83]
Sibuet J C, Letouzey J, Barbier F, Charvet J, Foucher J P, Hilde T W, Kimura M, Chiao L Y, Marsset B, Muller C, Stéphan J F (1987). Back arc extension in the Okinawa Trough. J Geophys Res Solid Earth, 92(B13): 14041–14063
CrossRef Google scholar
[84]
Sisson T W, Grove T L (1993). Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol, 113(2): 143–166
CrossRef Google scholar
[85]
Sisson T W, Grove T L, Coleman D S (1996). Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol, 126(1–2): 81–108
CrossRef Google scholar
[86]
Stern R J (1982). Strontium isotopes from circum-Pacific intra-oceanic island arcs and marginal basins: regional variations and implications for magmagenesis. Geol Soc Am Bull, 93(6): 477–486
CrossRef Google scholar
[87]
Takagi D, Sato H, Nakagawa M (2005). Experimental study of a low-alkali tholeiite at 1–5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. Contrib Mineral Petrol, 149(5): 527–540
CrossRef Google scholar
[88]
Tamura Y, Tatsumi Y (2002). Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: an example from the Izu–Bonin arc. J Petrol, 43(6): 1029–1047
CrossRef Google scholar
[89]
Tiepolo M, Langone A, Morishita T, Yuhara M (2012). On the recycling of amphibole-rich ultramafic intrusive rocks in the arc crust: evidence from Shikanoshima Island (Kyushu, Japan). J Petrol, 53(6): 1255–1285
CrossRef Google scholar
[90]
Tiepolo M, Tribuzio R (2005). Slab-melting during Alpine orogeny: evidence from mafic cumulates of the Adamello batholith (Central Alps, Italy). Chem Geol, 216(3): 271–288
CrossRef Google scholar
[91]
Tiepolo M, Tribuzio R (2008). Petrology and U–Pb zircon geochronology of amphibole-rich cumulates with sanukitic affinity from Husky Ridge (Northern Victoria Land, Antarctica): insights into the role of amphibole in the petrogenesis of subduction-related magmas. J Petrol, 49(5): 937–970
CrossRef Google scholar
[92]
Tiepolo M, Tribuzio R, Langone A (2011). High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: evidence from Adamello hornblendites (Central Alps, Italy). J Petrol, 52(5): 1011–1045
CrossRef Google scholar
[93]
Tiepolo M, Tribuzio R, Vannucci R (2002). The compositions of mantle-derived melts developed during the Alpine continental collision. Contrib Mineral Petrol, 144(1): 1–15
CrossRef Google scholar
[94]
Tiepolo M, Vannucci R (2014). The contribution of amphibole from deep arc crust to the silicate Earth’s Nb budget. Lithos, 208–209: 16–20
CrossRef Google scholar
[95]
Trua T, Deniel C, Mazzuoli R (1999). Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER): geochemical and isotopic (Sr, Nd, Pb) evidence. Chem Geol, 155(3): 201–231
CrossRef Google scholar
[96]
Verma S P (2001). Geochemical evidence for a rift-related origin of bimodal volcanism at Meseta Río San Juan, North-Central Mexican Volcanic Belt. Int Geol Rev, 43(6): 475–493
CrossRef Google scholar
[97]
White W M, Hofmann A W, Puchelt H (1987). Isotope geochemistry of Pacific mid-ocean ridge basalt. J Geophys Res Solid Earth, 92(B6): 4881–4893
CrossRef Google scholar
[98]
Wilson M (1989). Igneous Petrogenesis: A Global Tectonic Approach. London: Unwin Hyman, 227–242
[99]
Yamano M, Uyeda S, Foucher J P, Sibuet J C (1989). Heat flow anomaly in the middle Okinawa Trough. Tectonophysics, 159(3): 307–318
CrossRef Google scholar
[100]
Yan Q S, Shi X F (2014). Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: a review. Acta Oceanol Sin, 33(4): 1–12
CrossRef Google scholar
[101]
Zashu S, Kaneoka I, Aoki K I (1980). Sr isotope study of mafic and ultramafic inclusions from Itinome-gata, Japan. Geochem J, 14(3): 123–128
CrossRef Google scholar
[102]
Zeng Z G, Yu S X, Wang X Y, Fu Y T, Yin X B, Zhang G L, Wang X M, Chen S (2010). Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough. Acta Oceanol Sin, 29(4): 48–61
CrossRef Google scholar
[103]
Zhai S K (1986). The distribution and mineralogical characteristics of the pumice in the Okinawa Trough. Oceanol Limnol Sin, 17(6): 504–512 (in Chinese)
[104]
Zhai S K, Gan X Q (1995). Study of basalt from the hydrothermal field of the Okinawa Trough. Oceanol Limnol Sin, 26(2): 115–123 (in Chinese)
[105]
Zhang C L, Li Z X, Li X H, Ye H M, Wang A G, Guo K Y (2006). Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block, Northwest China: age, geochemistry, and implications for the rifting of Rodinia. Int Geol Rev, 48(2): 112–128
CrossRef Google scholar
[106]
Zhang S H, Zhao Y, Santosh M (2012). Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Res, 222: 339–367
CrossRef Google scholar
[107]
Zhang X H, Zhang H F, Tang Y J, Wilde S A, Hu Z C (2008). Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chem Geol, 249(3): 262–281
CrossRef Google scholar

Acknowledgments

We are grateful for the valuable comments and suggestions from the anonymous reviewers and editors. This work was supported by the National Basic Research Program of China (No. 2013CB429700), National Natural Science Foundation of China (Grant No. 41325021), Special Fund for the Global Change and Air-Sea Interaction Project (Grant No. GASI-GEOGE-02), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11030302), Special Fund for the Taishan Scholar Program of Shandong Province (Grant No. ts201511061), AoShan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology (Grant No. 2015ASTP-0S17), Innovative Talent Promotion Program (Grant No. 2012RA2191), Science and Technology Development Program of Shandong Province (Grant No. 2013GRC31502), Scientific and Technological Innovation Project Financially Supported by Qingdao National Laboratory for Marine Science and Technology (Grant Nos. 2015ASKJ03 and 2016ASKJ13), National High Level Talent Special Support Program, CAS/SAFEA International Partnership Program for Creative Research Teams, and Qingdao Collaborative Innovation Center of Marine Science and Technology.
Supplementary material is avaiable in the online version of this article at http://dx.doi.org/10.1007/s11707-017-0638-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2603 KB)

Accesses

Citations

Detail

Sections
Recommended

/