New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process

Yuxiang ZHANG , Zhigang ZENG , Shuai CHEN , Xiaoyuan WANG , Xuebo YIN

Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (2) : 325 -338.

PDF (2603KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (2) : 325 -338. DOI: 10.1007/s11707-017-0638-z
RESEARCH ARTICLE
RESEARCH ARTICLE

New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process

Author information +
History +
PDF (2603KB)

Abstract

In the middle Okinawa Trough (MOT), rhyolites have been typically considered as products of crystallization differentiation of basaltic magma as a feature of bimodal volcanism. However, the evidence is insufficient. This paper compared chemical trends of volcanic rocks from the MOT with fractional crystallization simulation models and experimental results and utilized trace element modeling combined with Rayleigh fractionation calculations to re-examine fractional crystallization processes in generating rhyolites. Both qualitative and quantitative studies indicate that andesites, rather than rhyolites, originate by fractional crystallization from basalts in the MOT. Furthermore, we established two batch-melting models for the MOT rhyolites and proposed that type 1 rhyolites are produced by remelting of andesites with amphiboles in the residue, while type 2 rhyolites are derived from remelting of andesites without residual amphiboles. It is difficult to produce melts with a SiO2 content ranging from 62% to 68% either by magmatic differentiation from basalts or by remelting of andesites, and this difficulty might help account for the compositional gap (Daly gap) for bimodal volcanism in the Okinawa Trough.

Keywords

Okinawa Trough / rhyolite / andesite / remelting / fractional crystallization

Cite this article

Download citation ▾
Yuxiang ZHANG, Zhigang ZENG, Shuai CHEN, Xiaoyuan WANG, Xuebo YIN. New insights into the origin of the bimodal volcanism in the middle Okinawa Trough: not a basalt-rhyolite differentiation process. Front. Earth Sci., 2018, 12(2): 325-338 DOI:10.1007/s11707-017-0638-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allègre C J, Minster J F (1978). Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett, 38(1): 1–25

[2]

Almeev R R, Holtz F, Ariskin A A, Kimura J I (2013). Storage conditions of Bezymianny Volcano parental magmas: results of phase equilibria experiments at 100 and 700 MPa. Contrib Mineral Petrol, 166(5): 1389–1414

[3]

Aoki K I (1971). Petrology of mafic inclusions from Itinome-gata, Japan. Contrib Mineral Petrol, 30(4): 314–331

[4]

Arculus R J, Wills K J A (1980). The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol, 21(4): 743–799

[5]

Baker B H, Goles G G, Leeman W P, Lindstrom M M (1977). Geochemistry and petrogenesis of a basalt-benmoreite-trachyte suite from the southern part of the Gregory Rift, Kenya. Contrib Mineral Petrol, 64(3): 303–332

[6]

Beard J S, Lofgren G E (1991). Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol, 32(2): 365–401

[7]

Blatter D L, Sisson T W, Hankins W B (2013). Crystallization of oxidized, moderately hydrous arc basalt at mid-to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol, 166(3): 861–886

[8]

Bonnefoi C C, Provost A, Albarede F (1995). The ‘Daly gap’ as a magmatic catastrophe. Nature, 378(6554): 270–272

[9]

Bouvier A, Vervoort J D, Patchett P J (2008). The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett, 273(1): 48–57

[10]

Brophy J G (1991). Composition gaps, critical crystallinity, and fractional crystallization in orogenic (calc-alkaline) magmatic systems. Contrib Mineral Petrol, 109(2): 173–182

[11]

Charlier B, Namur O, Toplis M J, Schiano P, Cluzel N, Higgins M D, Auwera J V (2011). Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology, 39(10): 907–910

[12]

Christensen N I (1978). Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics, 47(1): 131–157

[13]

Chung S L, Wang S L, Shinjo R, Lee C S, Chen C H (2000). Initiation of arc magmatism in an embryonic continental rifting zone of the southernmost part of Okinawa Trough. Terra Nova, 12(5): 225–230

[14]

Dalpé C, Baker D R (2000). Experimental investigation of large-ion-lithophile-element-, high-field-strength-element- and rare-earth-element- partitioning between calcic amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib Mineral Petrol, 140(2): 233–250

[15]

Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007). Amphibole “sponge” in arc crust? Geology, 35(9): 787–790

[16]

DeBari S M, Coleman R G (1989). Examination of the deep levels of an island arc: evidence from the Tonsina Ultramafic-Mafic Assemblage, Tonsina, Alaska. J Geophys Res Solid Earth, 94(B4): 4373–4391

[17]

DePaolo D J, Wasserburg G J (1976). Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys Res Lett, 3(12): 743–746

[18]

Dufek J, Bachmann O (2010). Quantum magmatism: magmatic compositional gaps generated by melt-crystal dynamics. Geology, 38(8): 687–690

[19]

Espinoza F, Morata D, Polvé M, Lagabrielle Y, Maury R C, Guivel C, Cotten J, Bellon H, Suárez M (2008). Bimodal back-arc alkaline magmatism after ridge subduction: Pliocene felsic rocks from Central Patagonia (47°S). Lithos, 101(3): 191–217

[20]

Fabbri O, Monié P, Fournier M (2004). Transtensional deformation at the junction between the Okinawa trough back-arc basin and the SW Japan island arc. Geol Soc Lond Spec Publ, 227(1): 297–312

[21]

Furukawa M, Kondo S, Miki M, Isezaki N (1991). Report on DELP 1988 Cruises in the Okinawa Trough: Part 5. Measurement of the three components and total intensity of the geomagnetic field in the Okinawa Trough. Bull Earthq Res Inst Univ Tokyo, 66: 91–150

[22]

Garrido C J, Bodinier J L, Burg J P, Zeilinger G, Hussain S S, Dawood H, Chaudhry M N, Gervilla F (2006). Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (Northern Pakistan): implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol, 47(10): 1873–1914

[23]

Green T H, Ringwood A E (1967). Crystallization of basalt and andesite under high pressure hydrous conditions. Earth Planet Sci Lett, 3: 481–489

[24]

Greene A R, Debari S M, Kelemen P B, Blusztajn J, Clift P D (2006). A detailed geochemical study of island arc crust: the Talkeetna arc section, South–Central Alaska. J Petrol, 47(6): 1051–1093

[25]

Grove T L, Baker M B (1984). Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res Solid Earth, 89(B5): 3253–3274

[26]

Grove T L, Donnelly-Nolan J M (1986). The evolution of young silicic lavas at Medicine Lake Volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contrib Mineral Petrol, 92(3): 281–302

[27]

Grove T L, Elkins-Tanton L T, Parman S W, Chatterjee N, Müntener O, Gaetani G A (2003). Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol, 145(5): 515–533

[28]

Guo P, Xu W L, Yu J J, Wang F, Tang J, Li Y (2016). Geochronology and geochemistry of Late Triassic bimodal igneous rocks at the eastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China: petrogenesis and tectonic implications. Int Geol Rev, 58(2): 196–215

[29]

Hamada M, Fujii T (2008). Experimental constraints on the effects of pressure and H2O on the fractional crystallization of high-Mg island arc basalt. Contrib Mineral Petrol, 155(6): 767–790

[30]

Hildreth W (2004). Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geotherm Res, 136(3): 169–198

[31]

Hirata N, Kinoshita H, Katao H, Baba H, Kaiho Y, Koresawa S, Ono Y, Hayashi K (1991). Report on DELP 1988 cruises in the Okinawa Trough: Part 3. Crustal structure of the southern Okinawa Trough. Bull Earthq Res Inst Univ Tokyo, 66: 37–70

[32]

Hochstaedter A G, Gill J B, Kusakabe M, Newman S, Pringle M, Taylor B, Fryer P (1990). Volcanism in the Sumisu Rift, I. Major element, volatile, and stable isotope geochemistry. Earth Planet Sci Lett, 100(1): 179–194

[33]

Hofmann A W, Feigenson M D (1983). Case studies on the origin of basalt. Contrib Mineral Petrol, 84(4): 382–389

[34]

Honma H, Kusakabe M, Kagami H, Iizumi S, Sakai H, Kodama Y, Kimura M (1991). Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin. Geochem J, 25(2): 121–136

[35]

Huang P, Li A C, Jiang H Y (2006). Geochemical features and their geological implications of volcanic rocks from the northern and middle Okinawa Trough. Acta Petrologica Sinica, 22(6): 1703–1712 (in Chinese)

[36]

Ishikawa M, Sato H, Furukawa M, Kimura M, Kato Y, Tsugaru R, Shimamura K (1991). Report on DELP 1988 cruises in the Okinawa Trough: Part 6. Petrology of volcanic rocks. Bull Earthq Res Inst Univ Tokyo, 66: 151–177

[37]

Ishizuka H, Kawanobe Y, Sakai H (1990). Petrology and geochemistry of volcanic rocks dredged from the Okinawa Trough, an active back-arc basin. Geochem J, 24(2): 75–92

[38]

Iwasaki T, Hirata N, Kanazawa T, Melles J, Suyehiro K, Urabe T, Möller L, Makris J, Shimamura H (1990). Crustal and upper mantle structure in the Ryukyu Island Arc deduced from deep seismic sounding. Geophys J Int, 102(3): 631–651

[39]

Jagoutz O, Müntener O, Burg J P, Ulmer P, Jagoutz E (2006). Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet Sci Lett, 242(3): 320–342

[40]

Johnson K T (1998). Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol, 133(1–2): 60–68

[41]

Jones W B (1979). Mixed benmoreite/trachyte flows from Kenya and their bearing on the Daly gap. Geol Mag, 116(6): 487–489

[42]

Kawamoto T (1996). Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett, 144(3): 577–589

[43]

Kimura M (1985). Back-arc rifting in the Okinawa Trough. Mar Pet Geol, 2(3): 222–240

[44]

Lacasse C, Sigurdsson H, Carey S N, Jóhannesson H, Thomas L E, Rogers N W (2007). Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcanol, 69(4): 373–399

[45]

Langmuir C H, Vocke R D Jr, Hanson G N, Hart S R (1978). A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett, 37(3): 380–392

[46]

Lee C S, Shor G G Jr, Bibee L D, Lu R S, Hilde T W C (1980). Okinawa Trough: origin of a back-arc basin. Mar Geol, 35(1): 219–241

[47]

Letouzey J, Kimura M (1985). Okinawa Trough genesis: structure and evolution of a backarc basin developed in a continent. Mar Pet Geol, 2(2): 111–130

[48]

Letouzey J, Kimura M (1986). The Okinawa Trough: genesis of a back-arc basin developing along a continental margin. Tectonophysics, 125(1): 209–230

[49]

Li W R, Yang Z S, Wang Y J (1997). The petrochemical features of the volcanic rocks in Okinawa Trough and their geological significance. Acta Petrologica Sinica, 13(4): 538–550 (in Chinese)

[50]

Li W X, Li X H, Li Z X (2005a). Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Res, 136(1): 51–66

[51]

Li X H, Qi C S, Liu Y, Liang X R, Tu X L, Xie L W, Yang Y H (2005b). Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: new constraints from Hf isotopes and Fe/Mn ratios. Chin Sci Bull, 50(21): 2481–2486

[52]

Luo W J, Hou T, Santosh M, Wen S H, Zhang Z C (2013). Petrogenesis of Early Cretaceous bimodal volcanic rocks in the Fanchang Basin, SE China: an energy-constrained assimilation–fractional crystallization model. Int Geol Rev, 55(8): 917–940

[53]

Ma W L, Wang X L, Jin X L (2004). Areal difference of middle and southern basalts from the Okinawa Trough and its genesis study. Acta Geol Sin, 78(6): 758–769 (in Chinese)

[54]

Mahoney J B (2005). Nd and Sr isotopic signatures of fine-grained clastic sediments: a case study of western Pacific marginal basins. Sediment Geol, 182(1): 183–199

[55]

McDonough W F, Sun S S (1995). The composition of the Earth. Chem Geol, 120(3): 223–253

[56]

McKenzie D, O’Nions R K (1991). Partial melt distributions from inversion of rare earth element concentrations. J Petrol, 32(5): 1021–1091

[57]

Melekhova E, Annen C, Blundy J (2013). Compositional gaps in igneous rock suites controlled by magma system heat and water content. Nat Geosci, 6(5): 385–390

[58]

Meng X W, Du D W, Wu J L, Long J (1999). Sr-Nd isotopic geochemistry and its geological significances of volcanic rock series from the middle part of Okinawa Trough. Sci China Earth Sci, 29(4): 367–371 (Series D)

[59]

Miller C F, Watson E B, Harrison T M (1988). Perspectives on the source, segregation and transport of granitoid magmas. Trans R Soc Edinb Earth Sci, 79(2–3): 135–156

[60]

Minster J F, Allègre C J (1978). Systematic use of trace elements in igneous processes. Contrib Mineral Petrol, 68(1): 37–52

[61]

Miyashiro A (1974). Volcanic rock series in island arcs and active continental margins. Am J Sci, 274(4): 321–355

[62]

Müntener O, Kelemen P B, Grove T L (2001). The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol, 141(6): 643–658

[63]

Nakada S, Kamata H (1991). Temporal change in chemistry of magma source under Central Kyushu, Southwest Japan: progressive contamination of mantle wedge. Bull Volcanol, 53(3): 182–194

[64]

Nakamura E, Campbell I H, Sun S S (1985). The influence of subduction processes on the geochemistry of Japanese alkaline basalts. Nature, 316(6023): 55–58

[65]

Nandedkar R H, Ulmer P, Müntener O (2014). Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Mineral Petrol, 167(6): 1015

[66]

Otamendi J E, Ducea M N, Bergantz G W (2012). Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian arc, Argentina. J Petrol, 53(4): 761–800

[67]

Patiño Douce A E (1997). Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743–746

[68]

Peccerillo A, Barberio M R, Yirgu G, Ayalew D, Barbieri M, Wu T W (2003). Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa volcano, central Ethiopian rift. J Petrol, 44(11): 2003–2032

[69]

Peccerillo A, Taylor S R (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol, 58(1): 63–81

[70]

Pichavant M, Macdonald R (2007). Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol, 154(5): 535–558

[71]

Rapp R P, Watson E B (1995). Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol, 36(4): 891–931

[72]

Rapp R P, Watson E B, Miller C F (1991). Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 51(1): 1–25

[73]

Reubi O, Blundy J (2009). A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature, 461(7268): 1269–1273

[74]

Rollinson H R (1993). Using geochemical data: evaluation, presentation, interpretation. London: Longman Scientific and Technical, 108–111

[75]

Schiano P, Monzier M, Eissen J P, Martin H, Koga K T (2010). Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol, 160(2): 297–312

[76]

Seno T, Maruyama S (1984). Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102(1): 53–84

[77]

Seno T, Stein S, Gripp A E (1993). A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data. J Geophys Res Solid Earth, 98(B10): 17941–17948

[78]

Shinjo R, Chung S L, Kato Y, Kimura M (1999). Geochemical and Sr-Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: implications for the evolution of a young, intracontinental back arc basin. J Geophys Res Solid Earth, 104(B5): 10591–10608

[79]

Shinjo R, Kato Y (2000). Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin. Lithos, 54(3): 117–137

[80]

Shukuno H, Tamura Y, Tani K, Chang Q, Suzuki T, Fiske R (2006). Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu–Bonin arc, Japan. J Volcanol Geotherm Res, 156(3): 187–216

[81]

Sibuet J C, Deffontaines B, Hsu S K, Thareau N, Le Formal J P, Liu C S (1998). Okinawa trough backarc basin: early tectonic and magmatic evolution. J Geophys Res Solid Earth, 103(B12): 30245–30267

[82]

Sibuet J C, Hsu S K, Shyu C T, Liu C S (1995). Structural and kinematic evolutions of the Okinawa Trough backarc basin. In: Taylor B, ed. Back Arc Basins. New York: Plenum Press, 343–379

[83]

Sibuet J C, Letouzey J, Barbier F, Charvet J, Foucher J P, Hilde T W, Kimura M, Chiao L Y, Marsset B, Muller C, Stéphan J F (1987). Back arc extension in the Okinawa Trough. J Geophys Res Solid Earth, 92(B13): 14041–14063

[84]

Sisson T W, Grove T L (1993). Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol, 113(2): 143–166

[85]

Sisson T W, Grove T L, Coleman D S (1996). Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol, 126(1–2): 81–108

[86]

Stern R J (1982). Strontium isotopes from circum-Pacific intra-oceanic island arcs and marginal basins: regional variations and implications for magmagenesis. Geol Soc Am Bull, 93(6): 477–486

[87]

Takagi D, Sato H, Nakagawa M (2005). Experimental study of a low-alkali tholeiite at 1–5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. Contrib Mineral Petrol, 149(5): 527–540

[88]

Tamura Y, Tatsumi Y (2002). Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: an example from the Izu–Bonin arc. J Petrol, 43(6): 1029–1047

[89]

Tiepolo M, Langone A, Morishita T, Yuhara M (2012). On the recycling of amphibole-rich ultramafic intrusive rocks in the arc crust: evidence from Shikanoshima Island (Kyushu, Japan). J Petrol, 53(6): 1255–1285

[90]

Tiepolo M, Tribuzio R (2005). Slab-melting during Alpine orogeny: evidence from mafic cumulates of the Adamello batholith (Central Alps, Italy). Chem Geol, 216(3): 271–288

[91]

Tiepolo M, Tribuzio R (2008). Petrology and U–Pb zircon geochronology of amphibole-rich cumulates with sanukitic affinity from Husky Ridge (Northern Victoria Land, Antarctica): insights into the role of amphibole in the petrogenesis of subduction-related magmas. J Petrol, 49(5): 937–970

[92]

Tiepolo M, Tribuzio R, Langone A (2011). High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: evidence from Adamello hornblendites (Central Alps, Italy). J Petrol, 52(5): 1011–1045

[93]

Tiepolo M, Tribuzio R, Vannucci R (2002). The compositions of mantle-derived melts developed during the Alpine continental collision. Contrib Mineral Petrol, 144(1): 1–15

[94]

Tiepolo M, Vannucci R (2014). The contribution of amphibole from deep arc crust to the silicate Earth’s Nb budget. Lithos, 208–209: 16–20

[95]

Trua T, Deniel C, Mazzuoli R (1999). Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER): geochemical and isotopic (Sr, Nd, Pb) evidence. Chem Geol, 155(3): 201–231

[96]

Verma S P (2001). Geochemical evidence for a rift-related origin of bimodal volcanism at Meseta Río San Juan, North-Central Mexican Volcanic Belt. Int Geol Rev, 43(6): 475–493

[97]

White W M, Hofmann A W, Puchelt H (1987). Isotope geochemistry of Pacific mid-ocean ridge basalt. J Geophys Res Solid Earth, 92(B6): 4881–4893

[98]

Wilson M (1989). Igneous Petrogenesis: A Global Tectonic Approach. London: Unwin Hyman, 227–242

[99]

Yamano M, Uyeda S, Foucher J P, Sibuet J C (1989). Heat flow anomaly in the middle Okinawa Trough. Tectonophysics, 159(3): 307–318

[100]

Yan Q S, Shi X F (2014). Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: a review. Acta Oceanol Sin, 33(4): 1–12

[101]

Zashu S, Kaneoka I, Aoki K I (1980). Sr isotope study of mafic and ultramafic inclusions from Itinome-gata, Japan. Geochem J, 14(3): 123–128

[102]

Zeng Z G, Yu S X, Wang X Y, Fu Y T, Yin X B, Zhang G L, Wang X M, Chen S (2010). Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough. Acta Oceanol Sin, 29(4): 48–61

[103]

Zhai S K (1986). The distribution and mineralogical characteristics of the pumice in the Okinawa Trough. Oceanol Limnol Sin, 17(6): 504–512 (in Chinese)

[104]

Zhai S K, Gan X Q (1995). Study of basalt from the hydrothermal field of the Okinawa Trough. Oceanol Limnol Sin, 26(2): 115–123 (in Chinese)

[105]

Zhang C L, Li Z X, Li X H, Ye H M, Wang A G, Guo K Y (2006). Neoproterozoic bimodal intrusive complex in the southwestern Tarim Block, Northwest China: age, geochemistry, and implications for the rifting of Rodinia. Int Geol Rev, 48(2): 112–128

[106]

Zhang S H, Zhao Y, Santosh M (2012). Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Res, 222: 339–367

[107]

Zhang X H, Zhang H F, Tang Y J, Wilde S A, Hu Z C (2008). Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China: implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chem Geol, 249(3): 262–281

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (2603KB)

Supplementary files

FES-17638-OF-ZYX_suppl_1

1092

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/