Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

Chen CHENG , Chunjuan BI , Dongqi WANG , Zhongjie YU , Zhenlou CHEN

Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (1) : 63 -71.

PDF (1170KB)
Front. Earth Sci. ›› 2018, Vol. 12 ›› Issue (1) : 63 -71. DOI: 10.1007/s11707-016-0613-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

Author information +
History +
PDF (1170KB)

Abstract

This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L–1 and were correlated with temperature (P<0.05). Dry deposition of PAHs concentrations ranged from 3.60–92.15 mg·L–1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m–2·d–1 and 4.06 mg·m–2·d–1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

Keywords

PAHs / dry and wet deposition / temporal and spatial variation / Shanghai

Cite this article

Download citation ▾
Chen CHENG, Chunjuan BI, Dongqi WANG, Zhongjie YU, Zhenlou CHEN. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification. Front. Earth Sci., 2018, 12(1): 63-71 DOI:10.1007/s11707-016-0613-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bae S YYi  S MKim  Y P (2002). Temporal and spatial variations of the particle size distribution of PAHs and their dry deposition fluxes in Korea. Atmos Environ36(35): 5491–5500 

[2]

Barakat A O (2002). PAHs and petroleum markers in the atmospheric environment of Alexandria City, Egypt. Water Air Soil Pollut139(1–4): 289–310 

[3]

Birgül  A Tasdemir Y Cindoruk S S (2011). Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler. Atmos Res101(1–2): 341–353 

[4]

Bureau of Shanghai Municipal Statistics (2015). Statistical Yearbook of Shanghai 2014. Concise statistical yearbook of Shanghai2015

[5]

Ciganek MAdamec  VJanosek J Machala  M (2004). A combined chemical and bioassay analysis of traffic emitted polycyclic aromatic hydrocarbons. Sci Total Environ334–335: 141–148 

[6]

Daane L LHarjono  IZvlstra G J, Häggblom  M M (2001). Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol67(6): 2683–2691 

[7]

Dallarosa J B Teixeira E C Pires M Fachel J (2005). Study of the profile of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) using multivariate methods. Atmos Environ39(35): 6587–6596 

[8]

Dickhut R MGustafson  K E (1995). Atmospheric inputs of selected polycyclic aromatic hydrocarbons and polychlorinated biphenyls to southern Chesapeake Bay. Mar Pollut Bull30(6): 385–396 

[9]

Dunbar J CLin  C IVergucht  IWong J Durant J L (2001). Estimating the contributions of mobile sources of PAH to urban air using real-time PAH monitoring. Sci Total Environ279(1–3): 1–19 

[10]

Fang G CChang  K FLu  CBai H (2004). Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at Urban, Industry Park and rural sampling sites in central Taiwan, Taichung. Chemosphere55(6): 787–796 

[11]

Guor  C F Cheng  N C Kuan  F C (2008). Ambient air aerosols, total polycyclic aromatic hydrocarbons (PAHs) for day and night time in the traffic areas of Central Taiwan. Toxicological & Environmental Chemistry200870(70): 15–27

[12]

Ho  K FLee  S C (2002). Identification of atmospheric volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in HongKong. Sci Total Environ289(1–3): 145–158 

[13]

Jiang YHou  XZhuang G Li JWang  QZhang R Lin Y (2009). The sources and seasonal variations of organic compounds in PM2.5 in Beijing and Shanghai. J Atmos Chem62(3): 175–192 

[14]

Khalili N RScheff  P AHolsen  T M (1995). PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ29(4): 533–542 

[15]

Li GZhou  MChen C Wang HWang  QLou S Qiao L P Tang X B Li LHuang  H YChen M H Huang C Zhang G F (2014). Characteristics of particulate matters and its chemical compositions during the dust episodes in Shanghai in spring, 2011. Environ Sci35(5): 1644–1653 (J)

[16]

Li JLiu  XZhang G Li X D (2010). Particle deposition fluxes of BDE-209, PAHs, DDTs, and chlordane in the Pearl River Delta, South China. Sci Total Environ408(17): 3664–3670 

[17]

Li XLi  PYan L Chen JCheng  TXu S (2011). Characterization of polycyclic aromatic hydrocarbons in fog–rain events. J Environ Monit13(11): 2988–2993 

[18]

Liang JMa  GFang H Chen LChristie  P (2011). Polycyclic aromatic hydrocarbon concentrations in urban soils representing different land use categories in Shanghai. Environmental Earth Sciences62(1): 33–42 

[19]

Lim M K C H Ayoko G A Morawska L (2005). Characterization of elemental and polycyclic aromatic hydrocarbon compositions of the urban air in Brisbane. Atmos Environ39(3): 463–476 

[20]

Liu YChen  LZhao J Wei YPan  ZMeng X Z Huang Q Li W (2010). Polycyclic aromatic hydrocarbons in the surface soil of Shanghai, China: concentrations, distribution and sources. Org Geochem41(4): 355–362 

[21]

Luo X JShe  J CMai  B XSheng   G YFu   J MZeng   E Y (2008). Distribution, source apportionment and transport of PAHs in sediments from the Pearl River Delta and the Northern South China Sea. Arch Environ Contam Toxicol55(1): 11–20 

[22]

McVeety B DHites  R A (1988). Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: a mass balance approach. Atmos Environ22(3): 511–536 

[23]

Nadal  MSchuhmacher   MDomingo  J L (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut132(1): 1–11 

[24]

Nielsen T (1996). Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmos Environ30(20): 3481–3490 

[25]

Odabasi MCetin  ESofuoglu A (2006). Determination of octanol–air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: application to gas–particle partitioning in an urban atmosphere. Atmos Environ40(34): 6615–6625 

[26]

Ollivon DBlanchoud  HMotelay-Massei A Garban B (2002). Atmospheric deposition of PAHs to an urban site, Pairs, France. Atmos Environ36(17): 2891–2900 

[27]

Ozaki NNitta  KFukushima T (2006). Dispersion and dry and wet deposition of PAHs in an atmospheric environment. Water Science & Technology A Journal of the International Association on Water Pollution Research53(2): 215–24

[28]

Park J SWade  T LSweet  S T (2002). Atmospheric deposition of PAHs, PCBs, and organochlorine pesticides to Corpus Christi Bay, Texas. Atmos Environ36(10): 1707–1720 

[29]

Ren N QQue  M XLi  Y FLiu  YWan X Xu DSverko  EMa J (2007). Polychlorinated biphenyls in Chinese surface soils.  Environ Sci Technol, 41(11): 3871–3876 

[30]

Tasdemir YHolsen  T M (2005). Measurement of particle phase dry deposition fluxes of polychlorinated biphenyls (PCBs) with a water surface sampler. Atmos Environ39(10): 1845–1854 

[31]

Wang X YLi  Q BLuo  Y MDing  QXi L M Ma J M Li YLiu  Y PCheng  C L (2010). Characteristics and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. Environ Monit Assess165(1–4): 295–305 

[32]

Wild S RJones  K C (1995). Polynuclear aromatic hydrocarbons in United Kingdom Environment: a preliminary source inventory and budget. Environ Pollut88(1): 91–108 

[33]

Xu SLiu  WTao S (2006). Emission of polycyclic aromatic hydrocarbons in China. Environ Sci Technol40(3): 702–708 

[34]

Yunker  M B Macdonald  R W Vingarzan  R Mitchell  R H Goyette  D Sylvestre  S (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem33(4): 489–515 

[35]

Zhang W SZhang  CWan D Yue DYe  YWang X (2008). Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy through fall. Environ Pollut153(3): 594–601 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1170KB)

Supplementary files

Supplementary Material 1

984

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/