Internal wave parameters retrieval from space-borne SAR image

Kaiguo FAN, Bin FU, Yanzhen GU, Xingxiu YU, Tingting LIU, Aiqin SHI, Ke XU, Xilin GAN

PDF(538 KB)
PDF(538 KB)
Front. Earth Sci. ›› 2015, Vol. 9 ›› Issue (4) : 700-708. DOI: 10.1007/s11707-015-0506-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Internal wave parameters retrieval from space-borne SAR image

Author information +
History +

Abstract

Based on oceanic internal wave SAR imaging mechanism and the microwave scattering imaging model for oceanic surface features, we developed a new method to extract internal wave parameters from SAR imagery. Firstly, the initial wind fields are derived from NCEP reanalysis data, the sea water density and oceanic internal wave pycnocline depth are estimated from the Levites data, the surface currents induced by the internal wave are calculated according to the KDV equation. The NRCS profile is then simulated by solving the action balance equation and using the sea surface radar backscatter model. Both the winds and internal wave pycnocline depth are adjusted by using the dichotomy method step by step to make the simulated data approach the SAR image. Then, the wind speed, pycnocline depth, the phase speed, the group velocity and the amplitude of internal wave can be retrieved from SAR imagery when a best fit between simulated signals and the SAR image appears. The method is tested on one scene SAR image near Dongsha Island, in the South China Sea, results show that the simulated oceanic internal wave NRCS profile is in good agreement with that on the SAR image with the correlation coefficient as high as 90%, and the amplitude of oceanic internal wave retrieved from the SAR imagery is comparable with the SODA data. Besides, the phase speeds retrieved from other 16 scene SAR images in the South China Sea are in good agreement with the empirical formula which describes the relations between internal wave phase speed and water depths, both the root mean square and relative error are less than 0.11 m·s−1 and 7%, respectively, indicating that SAR images are useful for internal wave parameters retrieval and the method developed in this paper is convergent and applicable.

Keywords

synthetic aperture radar / internal wave / retrieval

Cite this article

Download citation ▾
Kaiguo FAN, Bin FU, Yanzhen GU, Xingxiu YU, Tingting LIU, Aiqin SHI, Ke XU, Xilin GAN. Internal wave parameters retrieval from space-borne SAR image. Front. Earth Sci., 2015, 9(4): 700‒708 https://doi.org/10.1007/s11707-015-0506-7

References

[1]
Alpers W (1985). Theory of radar imaging of internal waves. Nature, 314(6008): 245–247
CrossRef Google scholar
[2]
Alpers W, He M X, Zeng K, Guo L F, Li X M (2005). The distribution of internal waves in the East China Sea and the Yellow Sea studied by multi-sensor satellite images. IGARSS, 2005, 0-7803-9050-4/05
[3]
Alpers W, Hennings I (1984). A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. Journal of Geophysical Research, 89: 10529–10546
[4]
Brandt P, Romeiser R, Rubino A (1999). On the determination of characteristics of the interior ocean dynamics from radar signatures of internal solitary waves. Journal of Geophysical Research, 104(C12): 30039–30045.
[5]
Cai S Q, Long X M, Gan Z J (2003). A method to estimate the forces exerted by internal solitons on cylindrical piles. Ocean Eng, 30(5): 673–689
CrossRef Google scholar
[7]
Fan K G, Huang W G, Gan X L, Fu B (2010). Retrieving internal wave surface currents from SAR image. Journal of Remote Sensing, 14(1): 127–139 (In Chinese)
[8]
Fan Z S (2002). Research Fundamentals of Ocean Interior Mixing. Beijing: China Ocean Press.
[9]
Gan X L, Huang W G, Yang J S, Zhou C B, Shi A Q, Jin W M (2007). A new method to extract internal wave parameters from sar imagery with Hilbert-Huang transform. J. Remote Sensing, 11(1): 39–47 (In Chinese)
[10]
Jackson C R, Apel J R(2004). Synthetic aperture radar marine user's manual. Silver Spring, Natl. Environ. Satell. Data, and Inf. Serv., Nalt. Oceanic and atmos. admin. pp. 245–262
[6]
Lai Y L (1999). Extraction of surface currents of solitary internal waves from synthetic aperture radar data. Proceedings of the IEEE Sixth Working Conference on Current Measurement. San Diego: IEEE
[11]
Le Caillec J M (2006). Study of the SAR signature of internal waves by nonlinear parametric autoregressive Models. IEEE Trans Geosci Rem Sens, 44(1): 148–158
CrossRef Google scholar
[12]
Lehner S, Schulz-Stellenfleth J, Schättler B, Breit H, Horstmann J (2000). Wind and wave measurements using complex ERS-2 SAR wave mode data. IEEE Trans Geosci Rem Sens, 38(5): 2246–2257
CrossRef Google scholar
[13]
Li X F, Clemente-Colón P, Friedman K S (2000). Estimating oceanic mixed layer depth from internal wave evolution observed from Radarsat-1 SAR. Johns Hopkins Apl Technical Digest, 2l(1): 130–135
[14]
Lin H, Fan K G, Shen H, Huang W G, He M X (2010). Review on remote sensing of oceanic internal wave by space-borne SAR. Progress in Geophys, 25(3): 1081–1091 (In Chinese)
[15]
Liu A K, Chang Y S, Hsu M K, Liang N K (1998). Evolution of nonlinear internal waves in the East and South China Seas. J Geophys Res, 103(C4): 7995–8008
CrossRef Google scholar
[16]
Lyzenga D R (2003). Status of forward models for SAR observation of current features. The Coastal and Marine Applications of SAR Symposium, Svalbard, Norway.
[17]
Ostrovsky L A, Stepanyants Y A (1989). Do internal solitions exist in the ocean? Rev Geophys, 27(3): 293–310
CrossRef Google scholar
[18]
Portabella M, Stoffelen A (2002). Toward an optimal inversion method for synthetic aperture radar wind retrieval. J Geophys Res, 107(C8): 3086
CrossRef Google scholar
[19]
Porter D L, Thompson D (1999). Continental shelf parameters inferred from SAR internal wave observations. J Atmos Ocean Technol, 16(4): 475–487
CrossRef Google scholar
[20]
Rodenas J A, Garello R (1998). Internal wave detection and location in SAR Images using wavelet transform. IEEE Trans Geosci Rem Sens, 36(5): 1494–1507
CrossRef Google scholar
[21]
Romeiser R (2005). USER'S of M4S Manual. pp. 31
[22]
Romeiser R, Alpers W (1997a). An improved composite surface model for the radar backscattering cross section of the ocean surface 2. Model response to surface roughness variations and the radar imaging of underwater bottom topography. J Geophys Res, 102(C11): 25251–25267
CrossRef Google scholar
[23]
Romeiser R, Alpers W (1997b). An improved composite surface model for the radar backscattering cross section of the ocean surface 1. Theory of the model and optimization/validation by scatterometer Data. J Geophys Res, 102: 25238–25250
[24]
Romeiser R, Schmidt A, Alpers W (1994). A three-scale composite surface model for the ocean wave-radar modulation transfer function, J Geophys Res, 99(C5): 9785–9801
[25]
Thompson R E, Gasparovic R F (1986). Intensity modulation in SAR image of internal waves. Nature, 320(27): 345–348
CrossRef Google scholar
[26]
Yang J S, Huang W G, Zhou C H, Zhou C B, Hsu M K, Xiao Q M (2003). Nonlinear internal wave amplitude remote sensing from SAR image. Proc SPIE, 4892: 450–454
CrossRef Google scholar
[27]
Zhang C (2010). Research on statistical characteristics of synthetic aperture radar ocean internal wave polarity conversion and parameters. Dissertation for Master degree. Hangzhou: Second Institute of Oceanography, State Oceanic Administration
[28]
Zhao Z X (2004). A study of nonlinear internal wave in the north eastern South China Sea. Dissertation for PhD degree. State of Delaware United States of America, The University of Delaware.
[29]
Zhao Z X, Klemas V, Zheng Q, Yan X H (2004). Estimating parameters of a two-layer stratified ocean from polarity conversion of internal solitary waves observed in satellite SAR images. Remote Sens Environ, 92(2): 276–287
CrossRef Google scholar
[30]
Zheng Q A, Susanto R D, Ho C R, Song Y T, Xu Q (2007). Statistical and dynamical analysis of generation mechanisms of solitary internal wave in the northern South China Sea. J Geophys Res, 112, C03021
CrossRef Google scholar

Acknowledgements

We would like to thank Remote Sensing Ground Station of China, Chinese Academy of Sciences (CAS) and European Space Agency for providing the ERS-1/2 SAR, ENVISAT ASAR and Radarsat-1 SAR images, the CISL Research Data Archive (RDA) for providing the NCEP reanalysis wind data, both http://www.nodc.noaa.gov/ and http://iridl.ldeo.columbia.edu for providing the Levitus98 data and SODA data, and Dr. R. Romeiser for sharing the radar microwave backscatter imaging model of M4S. This research is jointly supported by the National Natural Science Foundation of China (Grant Nos. 41106155 and 41471227) and under the Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics (No. SOED1407). This work is also supported by General Research Fund of Hong Kong Research Grants Council (RGC) under grants CUHK 402912 and 403113. We also would like to thank the anonymous reviewers’ comments to improve the original manuscript.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(538 KB)

Accesses

Citations

Detail

Sections
Recommended

/