The China Seismo-Electromagnetic Satellite (CSES-01) launched on February 2, 2018, has been steadily operating in orbit for more than six years, exceeding its designed five-year lifespan expectation. The evaluation results suggest that the satellite platform and the majority of payloads are performing well, and still providing reliable measurements. This report briefly introduces the representative scientific results obtained from CSES-01's fiveyear observations. The first result is the long-term global geophysical field data accumulated for the first time, including the global geomagnetic field, the electromagnetic field and waves in a broad frequency band, the in-situ and profile ionospheric plasma parameters, and the energetic particles. The second result is that a series of data processing and validation methods were obtained, and some of the methods are unique worldwide. The third result is that the geomagnetic field, lithospheric magnetic field, and ionospheric electron density 3D models were built based on CSES-01' s data. The fourth result is that statistical features of seismic-ionospheric disturbances were revealed and the direct observational evidence for the electromagnetic wave propagation models in the lithosphere-atmosphere-ionosphere was also confirmed. The fifth result is the physical processing of the space weather events was clearly described, showing CSES-01's good capability of monitoring space weather conditions.
Several physical mechanisms of earthquake nucleation, such as pre-slip, cascade triggering, aseismic slip, and fluid-driven models, have been proposed. However, it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases. In this study, we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake. We relocate earthquakes listed in the standard Japan Meteorological Agency (JMA) catalog since 2018 with the double-different relocation method. Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023. We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence, while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed. Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4 min and 2 min before the M7.6 mainshock. The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock, which is inconsistent with a simple cascade triggering model. Moreover, an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock. Results from back-projection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for ∼25 s, before propagating bi-laterally outward. Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault. A combination of fluid migration, aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M7.6 mainshock.
On April 3, 2024, an M 7.3 earthquake occurred in the offshore area of Hualien County, Taiwan, China. The seismogenic structure at the epicentral location was highly complex, and studying this earthquake is paramount for understanding regional fault activity. In this study, we employed ascending and descending orbit Sentinel-1 Synthetic Aperture Radar (SAR) data and utilized differential interferometry (InSAR) technique to obtain the co-seismic deformation field of this event. The line-of-sight deformation field revealed that the main deformation caused by this earthquake was predominantly uplift, with maximum uplift values of approximately 38.8 cm and 46.1 cm for the ascending and descending orbits, respectively. By integrating the three-dimensional GNSS coseismic deformation field, we identified the seismogenic fault located in the offshore thrust zone east of Hualien, trending towards the northwest. The fault geometry parameters, obtained through the inversion of an elastic half-space homogeneous model, indicated an optimal fault strike of 196°, a dip angle of 30.9°, and an average strike-slip of 0.4 m and dip-slip of -2.6 m. This suggests that the predominant motion along the seismogenic fault is thrusting. The distribution of post-seismic Coulomb stress changes revealed that aftershocks mainly occurred in stress-loaded regions. However, stress loading was observed along the northern segment of the Longitudinal Valley Fault, with fewer aftershocks. This highlights the importance of closely monitoring the seismic hazard associated with this fault segment.
The Hualien M 7.3 earthquake on April 3, 2024, was a significant and strong earthquake in Taiwan, China in the past two decades. The rupture process of the main shock and strong aftershocks is of great significance to the subsequent seismic activity and seismogenic tectonic research. Based on local strong-motion data, we used the IDS (Iterative Deconvolution and Stacking) method to obtain the rupture process of the mainshock and two strong aftershocks on the 23rd. The rupture of the mainshock was mainly unilateral, lasting 31 s, with a maximum slip of 2 m, and the depth of the large slip zone is about 41-49 km. There is a clear difference between the rupture depth of the main shock and the two strong aftershocks. The depths of the large slip zones of the latter two are 3-9 km and 8-10 km, respectively. There is also a significant difference in the seismogenic fault between the mainshock and the aftershocks, and we believe that there are two seismogenic fault zones in the study area, the deep and the shallow fault zone. The slip of the deep faults activates the shallow faults.
This paper aims to elucidate the seismic characteristics of the Three Gorges Reservoir area after impoundment and investigate the seismic source migration. Based on the seismic data analysis from the Badong segment in the Three Gorges Reservoir area, we assessed the local temporal and spatial variations in the frequent earthquakes. Correlation analysis was conducted to investigate the relationship between changes in reservoir water levels and the occurrence of reservoir-induced earthquakes. Additionally, we examined the regularity of earthquake occurrences at the exact location during different periods. Based on the fault mechanics principles, a formula was derived to estimate the length of open and wing-shaped rupture at the hypocenter under the influence of pore or excess pore water pressure. The results reveal that reservoir-induced seismicity demonstrates short-term cycles characterized by alternating "active periods" and "quiet periods," as well as long-term cycles with the combined periods. The probability of earthquakes occurring within one year at the epicentre is relatively high and decreases after four years. The derived formula can be utilized to estimate the seismic migration distance at the epicentre in the short term. These research findings provide valuable insights for analyzing the regularity of reservoir-induced earthquake activities and understanding the mechanism of seismic source migration.
The Kashmir Basin, shaped by the collision of the Indian and Eurasian tectonic plates, features prominent faults, including the Balapur fault and other fault zones. This study focuses on the Gulmarg fault within the Northwestern Himalaya, using advanced geomagnetic techniques for delineation. Geomagnetic measurements reveal the characteristics of the newly identified Gulmarg fault. Ground magnetic surveys with Proton Precession Magnetometers along linear profiles and a magnetic grid highlight fault-related anomalies. The results indicate a fault running through the Gulmarg meadows, approximately 1.6 km from the Balapur fault, suggesting a potential coupling between the two. Three profiles across the fault exhibit distinctive magnetic variations, highlighting the intricate nature of the fault structure. Gridding methods also reveal anomalies associated with subsurface water and hydraulic activities, underscoring the importance of advanced geophysical techniques. This study emphasizes the significance of detailed investigations to unravel the complex geological processes shaping the Kashmir Basin. The study provides valuable insights into the tectonic activity in the Gulmarg region, underscoring the role of geophysical studies in enhancing our understanding of dynamic geological structures like the Gulmarg fault zone.
Earthquake-induced landslides have always been a hot research topic in the field of geosciences. However, there have been few bibliometric analyses on this topic. To systematically understand the research status, this study is based on bibliometrics and extensively uses visualization analysis techniques. It combines quantitative and qualitative methods to conduct an in-depth analysis of 5016 papers collected from the Web of Science (www.webofscience.com). The results revealed that: (1)The number of papers on earthquake-induced landslides is steadily increasing, and is expected to continue to rise. (2)Countries prone to frequent earthquakes have made significant contributions to the research on earthquake-induced landslides, and the frequent and effective cooperation among these countries has had a very positive impact on promoting landslide study. (3) Research on earthquake-induced landslides is no longer limited to the field of geology, and the future direction is to integrate knowledge and technical methods from multiple disciplines. In the research methods of earthquake-induced landslides, there is a gradual shift from "experience, theory" to "data-driven". This study can provide researchers in this field with information on the core research forces, evolving hot topics, and future development trends of earthquake-induced landslides.