Global research trends in seismic landslide: A bibliometric analysis

Mengjie Yang , Shenghua Cui , Tao Jiang

Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (1) : 54 -68.

PDF (12988KB)
Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (1) :54 -68. DOI: 10.1016/j.eqrea.2024.100329
research-article

Global research trends in seismic landslide: A bibliometric analysis

Author information +
History +
PDF (12988KB)

Abstract

Earthquake-induced landslides have always been a hot research topic in the field of geosciences. However, there have been few bibliometric analyses on this topic. To systematically understand the research status, this study is based on bibliometrics and extensively uses visualization analysis techniques. It combines quantitative and qualitative methods to conduct an in-depth analysis of 5016 papers collected from the Web of Science (www.webofscience.com). The results revealed that: (1)The number of papers on earthquake-induced landslides is steadily increasing, and is expected to continue to rise. (2)Countries prone to frequent earthquakes have made significant contributions to the research on earthquake-induced landslides, and the frequent and effective cooperation among these countries has had a very positive impact on promoting landslide study. (3) Research on earthquake-induced landslides is no longer limited to the field of geology, and the future direction is to integrate knowledge and technical methods from multiple disciplines. In the research methods of earthquake-induced landslides, there is a gradual shift from "experience, theory" to "data-driven". This study can provide researchers in this field with information on the core research forces, evolving hot topics, and future development trends of earthquake-induced landslides.

Keywords

Earthquake-induced landslides / Visualization / Development trends / Bibliometrics

Cite this article

Download citation ▾
Mengjie Yang, Shenghua Cui, Tao Jiang. Global research trends in seismic landslide: A bibliometric analysis. Earthquake Research Advances, 2025, 5(1): 54-68 DOI:10.1016/j.eqrea.2024.100329

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Mengiie Yang: Writing - original draft, Visualization, Software, Formal analysis, Data curation, Conceptualization. Shenghua Cui: Supervision, Resources, Methodology, Funding acquisition, Conceptualization. Tao Jiang: Writing - review & editing, Methodology, Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author agreement and acknowledgement

I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and is not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed. This work was supported by the National Natural Science Foundation of China (No. 41931296), National Key R & D Program of China (No. 2023YFC3007100) and Tianfu Yongxing Laboratory Organized Research Project Funding (No. 2023KJGG05).

References

[1]

Aditian A., Kubota T., Shinohara Y., 2018. Comparison of gis-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 318, 101-111.

[2]

Alexander D., 1989. Urban landslides. Prog. Phys. Geogr. 13 (2), 157-191.

[3]

Aria M., Cuccurullo C., 2017. Bibliometrix: an R-tool for comprehensive science mapping analysis. J Informet 11 (4), 959-975.

[4]

Ayalew L., Yamagishi H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65 (1-2), 15-31.

[5]

Basharat M., Rohn J., Baig M.S., Khan M.R., 2014. Spatial distribution analysis of mass movements triggered by the 2005 Kashmir earthquake in the Northeast Himalayas of Pakistan. Geomorphology 206, 203-214.

[6]

Campbell C.S., 1989. Self-lubrication for long runout landslides. J. Geol. 97, 653-665.

[7]

Casagli N., Catani F., Del Ventisette C., Luzi G., 2010. Monitoring, prediction, and early warning using ground-based radar interferometry. Landslides 7 (3), 291-301.

[8]

Catani F., Lagomarsino D., Segoni S., Tofani V., 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat. Hazards Earth Syst. Sci. 13 (11), 2815-2831.

[9]

Chang Z.F., Chen X., An X.W., Cui W.J., 2016. Contributing factors to the failure of an unusually large landslide triggered by the 2014 Ludian, Yunnan China Ms6.5 earthquake. Nat Hazard Earth Sys 16 (2), 497-507.

[10]

Chang Z.L., Du Z., Zhang F., Huang F.M., Chen J.W., Li W.B., Guo Z.Z., 2020. Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models. Rem. Sens. 12, 502.

[11]

Chen C.M., 2006. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 57, 359-377.

[12]

Chen C.M., Ibekwe-SanJuan F., Hou J.H., 2010. The structure and dynamics of cocitation clusters: a multiple perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 61 (7), 1386-1409.

[13]

Chiu W.T., Ho Y.S., 2007. Bibliometric analysis of tsunami research. Scientometrics 73 (1), 3-17.

[14]

Corominas J., van Westen C., Frattini P., et al., 2014. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 73, 209-263.

[15]

Cracknell, Matthew J., Reading, Anya M., , 2014. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput. Geosci. 63, 22-33.

[16]

Cruden, D.M., Varnes D.J., 1996. Landslide types and processes. In: Turner A.K., Schuster R.L. (Eds.), Landslides, Investigation and Mitigation, Special Report 247. Transportation Research Board, Washington, DC, pp. 36-37.

[17]

Cui S.H., Wang H.G., Pei X.J., Huang R.Q., Kamai K., 2017. On the initiation and movement mechanisms of a catastrophic landslide triggered by the 2008 Wenchuan (Ms 8.0) earthquake in the epicenter area. Landslides 14 (3), 805-819.

[18]

Cui S.H., Pei X.J., Jiang Y., Wang G.H., Fan X.M., Yang Q.W., Huang R.Q., 2021. Liquefaction within a bedding fault: understanding the initiation and movement of the Daguangbao landslide triggered by the 2008 Wenchuan Earthquake (Ms=8.0). Eng. Geol. 295, 106455.

[19]

Cui S.H., Wu H., Pei X.J., Yang Q.W., Huang R.Q., Guo B.,2022. Characterizing the spatial distribution, frequency, geomorphological and geological controls on landslides triggered by the 1933 Mw 7.3 Diexi Earthquake, Sichuan, China. Geomorphology 403 (2022), 108177.

[20]

Cui S.H., Pei X.J., Huang R.Q., Zhu L., Yang H.W., Liang Y.F., Zhu C., 2024. The analysis of seismic induced progressive instability and failure mechanisms: a case study. Int. J. Rock Mech. Min. Sci. 174, 105646.

[21]

Dai F.C., Xu C., Yao X., Xu L., Tu X.B., Gong Q.M., 2011. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J. Asian Earth Sci. 40 (4), 883-895.

[22]

Dai K.R., Li Z.H., Tomás R., Liu G.X., Yu B., Wang X.W., Cheng H.Q., Chen J.J., Stockamp J., 2016. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 186, 501-513.

[23]

Di Toro G., Hirose T., Nielsen S., Pennacchioni G., Shimamoto T., 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311, 647-649.

[24]

Du J., Glade T., Woldai T., Chai B., Zeng B., 2020. Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas. Eng. Geol. 270, 105572.

[25]

Eisbacher G.H., Clague J.J., 1984. Destructive mass movements in high mountains: hazard and management. Geol Sur Canada 84.

[26]

Fahimnia B., Sarkis J., Davarzani H., 2015. Green supply chain management: a review and bibliometric analysis. Int. J. Prod. Econ. 162, 101-114.

[27]

Fan G., Zhang J.J., Wu J.B., Yan K.M., 2016. Dynamic response and dynamic failure mode of a weak intercalated rock slope using a shaking table. Rock Mech. Rock Eng. 49, 3243-3256.

[28]

Fan X.M., Scaringi G., Korup O., West A.J., van Westen C.J., Tanyas H., Hovius N., Hales T.C., Jibson R.W., Allstadt K.E., et al., 2019. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev. Geophys. 57, 421-503.

[29]

Fell R., Corominas J., Bonnard C., Cascini L., Leroi E., Savage W.Z., 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 102 (3), 85-98.

[30]

Gischig V., Preisig G., Eberhardt E., 2016. Numerical investigation of seismically induced rock mass fatigue as a mechanism con tributing to the progressive failure of deep-seated landslides. Rock Mech. Rock Eng. 49, 2457-2478.

[31]

Gokceoglu C., Sezer E.,2009. A statistical assessment on international landslide literature (1945-2008). Landslides 6 (4), 345-351.

[32]

Gorum T., Korup O., van Westen C.J., van der Meijde M., Xu C., van der Meer F.D., 2014. Why so few? Landslides triggered by the 2002 Denali earthquake, Alaska. Quat. Sci. Rev. 95, 80-94.

[33]

Grossi F., Belvedere O., Rosso R., 2003. Geography of clinical cancer research publications from 1995 to 1999. Eur. J. Cancer 39 (1), 106-111.

[34]

Guzzetti F., Mondini A.C., Cardinali M., Fiorucci F., Santangelo M., Chang K.T., 2012. Landslide inventory maps: new tools for an old problem. Earth Sci. Rev. 112 (1), 42-66.

[35]

Huang R.Q., 2009. The mechanism and geomechanical model of landslide disasters triggered by the Wenchuan 8.0 earthquake. J. Rock Mech. Geotech. Eng. 28 (6), 1239-1249 (in Chinese).

[36]

Huang Y., Zhao L., 2018. Review on landslide susceptibility mapping using support vector machines. Catena 165, 520-529.

[37]

Huang R.Q., Pei X.J., Li T.B., 2008. Basic characteristics and formation mechanism analysis of the Daguangbao giant landslide triggered by the Wenchuan earthquake. J. Eng. Geol. 16 (6), 730-741 (in Chinese).

[38]

Huang R.Q., Pei X.J., Zhang W.F., Li S.G., Li B.L., 2009. Further examination on characteristics and formation mechanism of Daguangbao landslide. J. Eng. Geol. 17 (6), 725-736 (in Chinese).

[39]

Huang Q.L., Chen W., Tang X.B., et al., 2017. Study on the method of slope unit zoning in regional geo-hazards risk assessment. J. Nat. Disasters 26, 157-164.

[40]

Huang J., Wu X., Ling S., et al., 2022a. A bibliometric and content analysis of research trends on GIS based landslide susceptibility from 2001 to 2020. Environ. Sci. Pollut. Res. 29 (58), 86954-86993.

[41]

Huang Y., Xu C., Zhang X., et al., 2022b. Bibliometric analysis of landslide research based on the Wos database. Nat Haz Research 2 (2), 49-61.

[42]

Hungr O., Leroueil S., Picarelli L., 2014. The Varnes classification of landslide types, an update. Landslides 11, 167-194.

[43]

Ilia I., Tsangaratos P., 2016. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 13 (2), 379-397.

[44]

Kamai T., Wang G.H., 2009. The landslides on the west part of Sichuan and south part of Gansu triggered by the 2008Wenchuan earthquake. In: Konagai (Ed.), Investigation Report on the May 12th 2008. Wenchuan Earthquake, China, pp. 21-30.

[45]

Kayastha P., Bijukchhen S.M., Dhital M.R., De Smedt F., 2013. GIS based landslide susceptibility mapping using a fuzzy logic approach: a case study from Ghurmi-Dhad Khola area, Eastern Nepal. J. Geol. Soc. India 82 (3), 249-261.

[46]

Keefer D.K., 1984. Landslides caused by earthquakes. Geol. Soc. Am. Bull. 95 (4), 406-421.

[47]

Lampe H.W., Hilgers D., 2015. Trajectories of efficiency measurement: a bibliometric analysis of DEA and SFA. Eur. J. Oper. Res. 240 (1), 1-21.

[48]

Latter J.H., 1969. Natural disasters. Adv. Sci. 25, 362-380.

[49]

Li X., Wu P., Shen G.Q., Wang X., Teng Y., 2017a. Mapping the knowledge domains of building information modeling (BIM): a bibliometric approach. Autom. ConStruct. 84, 195-206.

[50]

Li L.P., Lan H.X., Guo C.B., Zhang Y.S., Li Q.W., Wu Y.M., 2017b. A modified frequency ratio method for landslide susceptibility assessment. Landslides 14 (2), 727-741.

[51]

Liang Z., Wang C.M., Duan Z.J., et al., 2021. A hybrid model consisting of supervised and unsupervised learning for landslide susceptibility mapping. Rem. Sens. 13 (8), 1464.

[52]

Lim P., Steger S., Glade T., Murillo-García F.G., 2022. Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility. J. Mt. Sci. 19, 1670-1698.

[53]

Liu X.J., Zhan F.B., Hong S., Niu B.B., Liu Y.L., 2012. A bibliometric study of earthquake research: 1900-2010. Scientometrics 92 (3), 747-765.

[54]

Liu L.L., Zhang J., Li J.Z., et al., 2022. A bibliometric analysis of the landslide susceptibility research (1999-2021). Geocarto Int. 37 (26), 14309-14334.

[55]

Lourenco S.D.N., Hales T.C., Wang G.H., Korup O., Weidinger J.,2010. Characteristics of a Sample of Large Landslides Triggered by the 2008 Wenchuan Earthquake. Geologically Active, Proc. IAEG 2010 (CRC Press), Sichuan, China, pp. 419-425.

[56]

Massonnet D., Feigl K.L., 1998. Radar interferometry and its application to changes in the Earth's surface. Rev. Geophys. 36 (4), 441-500.

[57]

Meunier P., Uchida T., Hovius N., 2013. Landslide patterns reveal the sources of large earthquakes. Earth Planet Sci. Lett. 12, 18.

[58]

Perfect E., 1997. Fractal models for the fragmentation of rocks and soils: a review. Eng. Geol. 48 (3-4), 185-198.

[59]

Petley D.N., Mantovani F., Bulmer M.H., Zannoni A., 2005. The use of surface monitoring data for the interpretation of landslide movement patterns. Geomorphology 66, 133-147.

[60]

Petley D.N., Dunning S.A., Rosser N.J., Kausar A.B., 2006. Incipient Landslides in the Jhelum Valley, Pakistan Following the 8 Th October 2005 Earthquake.

[61]

Pradhan B., Saro L., 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Software 25 (6), 747-759.

[62]

Preuth T., Glade T., Demoulin A., 2010. Stability analysis of a human-influenced landslide in eastern Belgium. Geomorphology 120 (1-2), 38-47.

[63]

Qi S.W., Xu Q., Lan H.X., Zhang B., Liu J.Y., 2010. Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China. Eng. Geol. 116 (1-2), 95-108.

[64]

Qiao J., Pu X., 1987. Overview of earthquake induced landslides in the southwestern Sichuan Yunnan northern border zone. Mt. Res. 5 (3), 181-186.

[65]

Qiao J., Pu X.H., 1992. A preliminary study on the distributive regulation of seismic landslide in Sichuan and Yunnan. J. Seismol. Res. 15 (4), 411-417.

[66]

Reichenbach P., Rossi M., Malamud B.D., Mihir M., Guzzetti F., 2018. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 180, 60-91.

[67]

Saha S., Roy J., Pradhan B., Hembram T.K., 2021. Hybrid ensemble machine learning approaches for landslide susceptibility mapping using different sampling ratios at east Sikkim himalayan, India. Adv. Space Res. 68 (7), 2819-2840.

[68]

Sassa K., Nagai O., Solidum R., Yamazaki Y., Ohta H., 2010. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide. Landslides 7, 219-236.

[69]

Shreve R.L., 1959. Geology and Mechanics of the Blackhawk Rockslide, Lucerne Valley. California. Dissertation (Ph.D.). California Institute of Technology.

[70]

Song D.Q., Che A.L., Chen Z., Ge X.R., 2018. Seismic stability of a rock slope with discontinuities under rapid water drawdown and earth quakes in large-scale shaking table tests. Eng. Geol. 245, 153-168.

[71]

Sousa R.L., Karam K., Einstein H.H., 2014. Exploration analysis for landslide risk management. Georisk 8 (3), 155-170.

[72]

Van Dao D., Jaafari A., Bayat M., et al., 2020. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena 188, 104451.

[73]

Van Eck N.J., Waltman L., 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523-538.

[74]

Van Westen C.J., Van Asch T., Soeters R., 2006. Landslide hazard and risk zonation-why is it still so difficult? Bull. Eng. Geol. Environ. 65, 167-184.

[75]

Varnes D.J., 1978. Slope movement types and processes. Transportation Research Board Sp Rep 176, 11-33.

[76]

Wang E., Meng Q., 2009. Mesozoic and Cenozoic tectonic evolution of the Longmenshan fault belt. Sci. China Earth Sci. 52, 579-592.

[77]

Wang G.H., Huang R.Q., Chigira M., Wu X.Y., Lourenço S.D.N., 2013. Landslide amplification by liquefaction of runout-path material after the 2008 Wenchuan (M 8.0) earthquake, China. Earth Surf. Process. Landforms 38 (3), 265-274.

[78]

Wang J., Wang Z.G., Sun G.H., Luo H.M., 2024. Analysis of three-dimensional slope stability combined with rainfall and earthquake. Nat. Hazards Earth Syst. Sci. 24, 1741-1756.

[79]

Wu X.L., Chen X.Y., Zhan F.B., Hong S., 2015. Global research trends in landslides during 1991-2014: a bibliometric analysis. Landslides 12, 1215-1226.

[80]

Wu H., Zhao Z., Xue X., Shen G.Q., Yang R.J., Wang L., 2020. An integrated scientometric and SNA approach to explore the classics in CEM research. Civ En. OR Manag. 26 (5), 459-474.

[81]

Wu H., Pei X.J., Cui S.H., 2021. Research on the topographical and geological control of landslide development and distribution in strong earthquake mountainous areas. J Rock Mech Eng. 40 (5), 972-986 (in Chinese).

[82]

Xu C., 2018. Landslide seismology geology: a sub-discipline of environ mental earth sciences. Eng. Geol. 26, 207-222.

[83]

Xu Q., Pei X.J., Huang R.Q., 2009. Large-scale Landslides Induced by the Wenchuan Earthquake. Science Press, Beijing, p. 473 (in Chinese).

[84]

Xu C., Dai F.C., Xu X.W., 2010. A review of research on landslide disasters in the Wenchuan earthquake. Geol. Rev. 56 (6), 860-874 (in Chinese).

[85]

Xu C., Xu X., Lan H.X., Zhang B., Liu J.Y., 2012. Spatial distribution analysis of landslides triggered by 2008.5. 12 Wenchuan earthquake, China. Eng. Geol. 116 (1-2), 95-108.

[86]

Xu Q., Li Y.R., Zhang S., Dong X.J., 2016. Classification of large-scale landslides induced by the 2008 Wenchuan earthquake, China. Environ. Earth Sci. 75, 22.

[87]

Yashar A., Asadallah N., Ali Y., 2013. Landslide process and impacts: a proposed classification method. Catena 104, 219-232.

[88]

Yin Y.P., Zheng W.M., Li X.C., Sun P., Li B., 2011. Catastrophic landslides associated with the M 8.0 Wenchuan earthquake. Bull. Eng. Geol. Environ. 70 (1), 15-32.

[89]

Zang M.D., Yang G.X., Dong J.Y., Qi S.W., He J.X., Liang N., 2022. Experimental study on seismic response and progressive failure char acteristics of bedding rock slopes. J Rock Mech Geotech Eng. 15 (5), 1394-1405.

[90]

Zhang M., Yin Y.P., Wu S.R., Zhang Y.S., Han J.L., 2011. Dynamics of the Niumiangou creek rock avalanche triggered by 2008 Ms 8.0 Wenchuan earthquake, Sichuan, China. Landslides 8 (3), 363-371.

[91]

Zhang D., Wu Z.H., Li J.C., Li Y., 2013a. A review of research on earthquake landslides at home and abroad. J. Geomechanics 19 (3), 225-241.

[92]

Zhang Y.B., Chen G.Q., Zheng L., Li Y.G., Wu J., 2013b. Effects of near-fault seismic loadings on run-out of large-scale landslide: a case study. Eng. Geol. 166, 216-236.

[93]

Zhang J., Yin K.L., Wang J.J., 2016. Evaluation of landslide susceptibility for Wanzhou district of three gorges reservoir. Chin. J. Rock Mech. Eng. 35 (2), 284-296 (in Chinese).

[94]

Zhu A.X., Lu G.N., Liu J., Qin C.Z., Zhou C.H., 2018. Spatial prediction based on third law of geography. Spatial Sci. 24 (4), 225-240.

PDF (12988KB)

145

Accesses

0

Citation

Detail

Sections
Recommended

/