The representative scientific results of the China Seismo-Electromagnetic Satellite

Zhima Zeren , Yanyan Yang , Rui Yan , Zhenxia Zhang , Jie Wang , He Huang , Song Xu , Hengxin Lu , Na Zhou , Jianping Huang

Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (1) : 1 -9.

PDF (8456KB)
Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (1) :1 -9. DOI: 10.1016/j.eqrea.2024.100314
research-article

The representative scientific results of the China Seismo-Electromagnetic Satellite

Author information +
History +
PDF (8456KB)

Abstract

The China Seismo-Electromagnetic Satellite (CSES-01) launched on February 2, 2018, has been steadily operating in orbit for more than six years, exceeding its designed five-year lifespan expectation. The evaluation results suggest that the satellite platform and the majority of payloads are performing well, and still providing reliable measurements. This report briefly introduces the representative scientific results obtained from CSES-01's fiveyear observations. The first result is the long-term global geophysical field data accumulated for the first time, including the global geomagnetic field, the electromagnetic field and waves in a broad frequency band, the in-situ and profile ionospheric plasma parameters, and the energetic particles. The second result is that a series of data processing and validation methods were obtained, and some of the methods are unique worldwide. The third result is that the geomagnetic field, lithospheric magnetic field, and ionospheric electron density 3D models were built based on CSES-01' s data. The fourth result is that statistical features of seismic-ionospheric disturbances were revealed and the direct observational evidence for the electromagnetic wave propagation models in the lithosphere-atmosphere-ionosphere was also confirmed. The fifth result is the physical processing of the space weather events was clearly described, showing CSES-01's good capability of monitoring space weather conditions.

Keywords

China Seismo-Electromagnetic Satellite / The geophysical field models / The seismo-ionospheric disturbances / Space weather event

Cite this article

Download citation ▾
Zhima Zeren, Yanyan Yang, Rui Yan, Zhenxia Zhang, Jie Wang, He Huang, Song Xu, Hengxin Lu, Na Zhou, Jianping Huang. The representative scientific results of the China Seismo-Electromagnetic Satellite. Earthquake Research Advances, 2025, 5(1): 1-9 DOI:10.1016/j.eqrea.2024.100314

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zeren Zhima: Review, editing, Conceptualization. Yanyan Yang: Validation, Data processing, Analysis, Writing. Rui Yan: Validation, Data processing, Analysis, Writing. Zhenxia Zhang: Validation, Data processing, Analysis, Writing. Jie Wang: Validation, Data processing, Analysis, Writing. Huang He: Validation, Data processing, Analysis, Writing. Song Xu: Validation, Data processing Hengxin Lu: Validation, Data processing. Na Zhou: Validation, Data processing. Jianping Huang: Validation, Data processing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author agreement and acknowledgment

The scientific achievements of the CSES are attributed to numerous colleagues both domestically and internationally which are too many to be listed. This article only lists the members who participated in the writing of this article. We express our gratitude to all members of the CSES team, both domestic and international, for your dedication and intelligence devoted to the CSES mission. This work made use of the data from the CSES mission (https://www.leos.ac.cn/), a project funded by the China National Space Administration (CNSA) and China Earthquake Administration (CEA). This scientific application of CSES data in this paper is supported by the National Key Research and Development Program of China 2023YFE0117300, the National Natural Science Foundation of China Grant 4187417, the APSCO Earthquake Research Project Phase II, and the Dragon 5 cooperation 2020–2024 (ID. 59236), and the CSES02 project.

References

[1]

Alken P., Thébault E., Beggan C.D., Aubert J., Baerenzung J., Brown W.J., Wardinski I., 2021. Evaluation of candidate models for the 13th generation international geomagnetic reference field. Earth Planets Space 73 (1), 48.

[2]

Battistion R., C Neubüser C., Follega F.M., et al., 2023. Observation of anomalous electron fluxes induced by GRB221009A on CSES-01 low-energy charged particle detector. Astrophys. J. Lett. 946 (6pp), L29.

[3]

Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X., 2017. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 15, 418-429. https://doi.org/10.1002/2016SW001593.

[4]

Cao J., Zeng L., Zhan F., Wang Z., Wang Y., Chen Y., Ma L., 2018. The electromagnetic wave experiment for CSES mission: search coil magnetometer. Sci. China Technol. Sci. 61 (5), 653-658.

[5]

Chen L., Ou M., Yuan Y., Sun F., Yu X., Zhen W., 2018. Preliminary observation results of the coherent beacon system onboard the China seismo-electromagnetic satellite-1. Earth Planet. Phys. 2 (6), 505-514.

[6]

Cheng B., Zhou B., Magnes W., Lammegger R., Pollinger A., 2018. High-precision magnetometer for geomagnetic exploration onboard the China SeismoElectromagnetic Satellite. Sci. China Technol. Sci. 61 (5), 659-668.

[7]

Chu W., Huang J.P., Shen X.H., Wang P., Li X.Q., An Z.H., Xu Y.B., Liang X.H., 2018. Preliminary results of the high energetic particle package on board the China seismoelectromagnetic satellite. Earth Planet. Phys. 2 (6), 1-10.

[8]

Finlay C.C., Kloss C., Olsen N., Hammer M., Tøffner-Clausen L., Grayver A., Kuvshinov A., 2020. The CHAOS-7 geomagnetic field model and observed changes in the South Atlantic Anomaly. Earth Planets Space.

[9]

Hayakawa M., Molchanov O., 2004. Summary report of NASDA's earthquake remote sensing frontier project. Phys. Chem. Earth, Parts A/B/C 29 (4-9), 617-625.

[10]

Hu Y., Zhima Z., Huang J., Zhao S., Guo F., Wang Q., Shen X., 2020. Algorithms and implementation of wave vector analysis tool for the electromagnetic waves recorded by the CSES satellite. Chin. J. Geophys. 63 (5), 1751-1765.

[11]

Huang H., Chen Y., Liu L., Le H., Wan W., 2015. An empirical model of the topside plasma density around 600 km based on ROCSAT-1 and Hinotori observations. J. Geophys. Res.: Space Phys. 120 (5), 4052-4063.

[12]

Huang J., Lei J., Li S., Zeren Z., Li C., Zhu X., Yu W., 2018b. The Electric Field Detector (EFD) onboard the ZH-1 satellite and the first observational results. Earth Planet. Phys. 2 (6), 469-478.

[13]

Huang H., Lin J., Xu S., Le H., Guo F., Zeren Z., et al., 2022. A 3D empirical model of electron density based on CSES radio occultation measurements. Space Weather 20, e2021SW003018.

[14]

Hu Y., Zhima Z., Fu H., Cao J., Piersanti M., Wang T., Shen X., 2023. A large-scale magnetospheric line radiation event in the upper ionosphere recorded by the China-Seismo-Electromagnetic satellite. J. Geophys. Res.: Space Phys. 128 (2), e2022JA030743.

[15]

Huang H., Lu X., Liu L., Wang W., Li Q., 2018a. Transition of interhemispheric asymmetry of equatorial ionization anomaly during solstices. J. Geophys. Res.: Space Phys. 123 (12), 300. https://doi.org/10.1029/2018ja026055,10,283-210.

[16]

Li X.Q., Xu Y.B., An Z.H., Liang X.H., Wang P., Zhao X.Y., et al., 2019. The high-energy particle package onboard CSES. Radiat. Detect. Technol. Methods 3, 22.

[17]

Lin J., Shen X., Hu L., Wang L., Zhu F., 2018. CSES GNSS ionospheric inversion technique, validation, and error analysis. Sci. China Technol. Sci. 61 (1674-7321), 669.

[18]

Liu C., Guan Y., Zheng X., Zhang A., Piero D., Sun Y., 2019. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 62 (5), 829-838. https://doi.org/10.1007/s11431-018-9345-8.

[19]

Liu D., Zeren Z., Shen X., et al., 2021. Typical ionospheric disturbances revealed by the plasma analyzer package onboard the China Seismo-Electromagnetic Satellite. Adv. Space Res. 68 (9), 3796-3805.

[20]

Lv F., Hu Y., Zhima Z., Sun X., Lu C., Yang D., 2023. The upward propagating ionospheric hiss waves during the seismic time observed by the China seismoelectromagnetic satellite. Front. Astron. Space Sci. 10.

[21]

Piersanti M., Ubertini P., Battiston R., Bazzano A., D'Angelo G., Rodi J.G., et al., 2023. Evidence of an upper ionospheric electric field perturbation correlated with a gamma ray burst. Nat. Commun. 14 (1), 7013.

[22]

Picozza P., Battiston R., Ambrosi G., Bartocci S., Basara L., Burger W.J., et al., 2019. Scientific goals and in-orbit performance of the high-energy particle detector on board the CSES. Astrophys. J. Suppl. 243 (17), 16.

[23]

Pollinger A., Lammegger R., Magnes W., Hagen C., Ellmeier M., Jernej I., Baumjohann W., 2018. Coupled dark state magnetometer for the China SeismoElectromagnetic Satellite. Meas. Sci. Technol. 29 (9), 095103.

[24]

Pullinets S., Ouzounov D., 2018. The possibility of earthquake forecasting. J. Asian Earth Sci. 41 (4), 371-382.

[25]

Shen X., Zhang X., Yuan S., Wang L., Cao J., Huang J., Dai J., 2018. The state-of-theart of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 61 (5), 634-642.

[26]

Wang Q., Huang J., Zhang X., Shen X., Yuan S., Zeng L., Cao J., 2018. China SeismoElectromagnetic Satellite search coil magnetometer data and initial results. Earth Planet. Phys. 2 (6), 462-468.

[27]

Wang L., Zhang Z., Shen X., Li X., Liang X., Zhima Z., Chu W., Guo F., Zhou N., Chen H., Wei D., 2022. Effects of solar proton events associated with X-ray flares on near-earth electron and proton fluxes based on ZH-1 satellite observations. Front. Earth Sci. 10, 895561.

[28]

Wang X., Cheng W., Zhou Z., Xu S., Yang D., Cui J., 2019. Comparison of CSES ionospheric RO data with COSMIC measurements. Ann. Geophys. 37 (6), 1025-1038. Copernicus GmbH.

[29]

Wang J., Shen X., Yang Y., Zeren Z., Zhou B., Werner M., de Santis A., Huang J., Yao C., Li Z., Zheng Y., Zhao S., Lu H., Wang Q., Chu W., Guo F., Pollinger A., Lammegger R., 2023b. A global lithospheric magnetic field model between ±65° latitude derived from CSES satellite scalar data. Phys. Earth Planet. In. 340.

[30]

Wang X., Yang D., Zhou Z., Cheng W., Xu S., Guo F., 2020. Validation of CSES RO measurements using Ionosonde and ISR observations. Adv. Space Res. 37, 1025-1038, 2019.

[31]

Yan R., Shen X., Huang J., Wang Q., Chu W., Liu D., Xu S., 2018. Examples of unusual ionospheric observations by the CSES prior to earthquakes. Earth Planet. Phys. 2 (6), 515-526.

[32]

Yan R., Zhima Z., Xiong C., Shen X., Huang J., Guan Y., et al., 2020. Comparison of electron density and temperature from the CSES satellite with other space-borne and ground-based observations. J. Geophys. Res.: Space Phys. 125, e2019JA027747.

[33]

Wang L., Zhang Z., Zhima Z., Shen X., Chu W., Yan R., Guo F., Zhou N., Chen H., Wei D., 2023a. Statistical analysis of high-energy particle perturbations in the radiation belts related to strong earthquakes based on the CSES observations. Rem. Sens. 15, 5030.

[34]

Yan R., Guan Y., Miao Y., Zhima Z., Xiong C., Zhu X., et al., 2022. The regular features recorded by the Langmuir satellite onboard the low earth polar orbit satellite CSES. J. Geophys. Res.: Space Phys. 127, e2021JA029289.

[35]

Yang Y., Zhima Z.-R., Shen X.-H., Chu W., Huang J.-P., Wang Q., Liu D.-P., 2020. The first intense geomagnetic storm event recorded by the China seismo-electromagnetic satellite. Space Weather 18 (1), e2019SW002243. https://doi.org/10.1029/2019sw002243.

[36]

Yang Y., Zhou B., Hulot G., Olsen N., Wu Y., Xiong C., et al., 2021a. CSES high precision magnetometer data products and example study of an intense geomagnetic storm. J. Geophys. Res.: Space Phys. 126, e2020JA028026.

[37]

Yang Y., Hulot G., Vigneron P., Shen X., Zhima Z., Zhou B., et al., 2021b. The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite. Earth Planets Space 73 (1), 1-21.

[38]

Yang D.H., Zhima Z.R., Wang Q., et al., 2022. Stability validation on the VLF waveform data of the China-Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 65.

[39]

Yang Y., Zhima Z., Shen X., Zhou B., Wang J., Magnes W., Pollinger A., Lu H., Guo F., Lammegger R., et al., 2023. An improved in-flight calibration scheme for CSES magnetic field data. Rem. Sens. 15, 4578.

[40]

Zhang Z., Chen L., Liu S., Xiong Y., Li X., Wang Y., et al., 2020. Chorus acceleration of relativistic electrons in extremely low L-shell during the geomagnetic storm of August 2018. Geophys. Res. Lett. 47, e2019GL086226.

[41]

Zhang Z., Li X., Wang L., Zhima Z., Shen X., Yuan S., et al., 2022. Evaluation of the proton contamination to MeV electrons by solar proton events based on CSES observations. J. Geophys. Res.: Space Phys. 127, e2022JA030550.

[42]

Zhang Z., Xiang Z., Wang Y., Ni B., Li X., 2021a. Electron acceleration by magnetosonic waves in the deep inner belt (L=1.5-2) region during geomagnetic storm of August 2018. J. Geophys. Res.: Space Phys. 126, e2021JA029797.

[43]

Zhang Z., Yang D., Wang D., Wang L., Zhang F., Li X., Zeren Z., 2023. Evidence for electron precipitation diffused by rising-tone quasiperiodic whistler waves in extremely low L-shells observed by CSES. J. Geophys. Res.: Space Phys. 128, e2023JA032014.

[44]

Zhang Z., Shen X., Li X., Wang Y., 2021b. Proton loss of inner radiation belt during the geomagnetic storm of 2018 based on CSES satellite observation. Chin. Phys. B 30 (12), 129401.

[45]

Zhao S., Zhou C., Shen X., Zhima Z., 2019. Investigation of VLF transmitter signals in the ionosphere by ZH-1 observations and full-wave simulation. J. Geophys. Res.: Space Phys. 124 (6), 4697-4709.

[46]

Zhao S., Shen X., Zhima Z., Zhou C., 2020. The VLF transmitters' radio wave anomalies related to 2010 Ms 7.1 Yushu earthquake observed by DEMETER satellite and the possible mechanism. Annal. Geophys. Discuss. 1-22.

[47]

Zhao S.F., Shen X.H., Liao L., Zhima Z., 2021. A lithosphere-atmosphere-ionosphere coupling model for ELF electromagnetic waves radiated from seismic sources and its possibility observed by the CSES. Sci. China Technol. Sci. 64 (11), 9.

[48]

Zhima Z., Cao J., Liu W., Fu H., Wang T., Zhang X., Shen X., 2014. Storm time evolution of ELF/VLF waves observed by DEMETER satellite. J. Geophys. Res.: Space Phys., 2013JA 019237 https://doi.org/10.1002/2013JA019237.

[49]

Zhima Z., Hu Y., Shen X., Chu W., Piersanti M., Parmentier A., Zhang Z., Wang Q., Huang J., Zhao S., et al., 2021. Storm-time features of the ionospheric ELF/VLF waves and energetic electron fluxes revealed by the China seismo-electromagnetic satellite. Appl. Sci. 11, 2617. https://doi.org/10.3390/app11062617.

[50]

Zhima Z., Huang J.P., Shen X.H., Xia Z., Chen L., Piersanti M., et al., 2020. Simultaneous observations of ELF/VLF rising-tone quasiperiodic waves and energetic electron precipitations in the high-latitude upper ionosphere. J. Geophys. Res.: Space Phys. 125, e2019JA027574.

[51]

Zhima Z., Zhou B., Zhao S., Wang Q., Huang J., Zeng L., et al., 2022a. Crosscalibration on the electromagnetic field detection payloads of the China SeismoElectromagnetic Satellite. Sci. China Technol. Sci. 1674-7321.

[52]

Zhima Z., Yan R., Lin J., Wang Q., Yang Y., Lv F., Shen X., 2022b. The possible seismo-ionospheric perturbations recorded by the China-Seismo-Electromagnetic satellite. Rem. Sens. 14 (4), 905.

[53]

Zhou B., Yang Y., Zhang Y., Gou X., Cheng B., Wang J., Li L., 2018. Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite. Earth Planet. Phys. 2 (6), 455-461.

PDF (8456KB)

227

Accesses

0

Citation

Detail

Sections
Recommended

/