The evolution process between the earthquake swarm beneath the Noto Peninsula, central Japan and the 2024 M 7.6 Noto Hanto earthquake sequence

Zhigang Peng , Xinglin Lei , Qing-Yu Wang , Dun Wang , Phuc Mach , Dongdong Yao , Aitaro Kato , Kazushige Obara , Michel Campillo

Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (1) : 10 -21.

PDF (16607KB)
Earthquake Research Advances ›› 2025, Vol. 5 ›› Issue (1) :10 -21. DOI: 10.1016/j.eqrea.2024.100332
research-article

The evolution process between the earthquake swarm beneath the Noto Peninsula, central Japan and the 2024 M 7.6 Noto Hanto earthquake sequence

Author information +
History +
PDF (16607KB)

Abstract

Several physical mechanisms of earthquake nucleation, such as pre-slip, cascade triggering, aseismic slip, and fluid-driven models, have been proposed. However, it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases. In this study, we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake. We relocate earthquakes listed in the standard Japan Meteorological Agency (JMA) catalog since 2018 with the double-different relocation method. Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023. We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence, while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed. Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4 min and 2 min before the M7.6 mainshock. The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock, which is inconsistent with a simple cascade triggering model. Moreover, an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock. Results from back-projection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for ∼25 s, before propagating bi-laterally outward. Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault. A combination of fluid migration, aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M7.6 mainshock.

Cite this article

Download citation ▾
Zhigang Peng, Xinglin Lei, Qing-Yu Wang, Dun Wang, Phuc Mach, Dongdong Yao, Aitaro Kato, Kazushige Obara, Michel Campillo. The evolution process between the earthquake swarm beneath the Noto Peninsula, central Japan and the 2024 M 7.6 Noto Hanto earthquake sequence. Earthquake Research Advances, 2025, 5(1): 10-21 DOI:10.1016/j.eqrea.2024.100332

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zhigang Peng: Writing - review & editing, Writing - original draft, Supervision, Project administration, Funding acquisition, Conceptualization. Xinglin Lei: Writing - review & editing, Writing - original draft, Supervision, Software, Resources, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Qing-Yu Wang: Writing original draft, Software, Methodology, Investigation, Formal analysis. Dun Wang: Writing - review & editing, Writing - original draft, Visualization, Software, Resources, Methodology, Investigation, Formal analysis. Phuc Mach: Visualization, Software, Investigation, Formal analysis. Dongdong Yao: Writing - review & editing, Software, Investigation. Aitaro Kato: Writing - review & editing, Visualization, Resources. Kazushige Obara: Writing - review & editing, Resources, Conceptualization. Michel Campillo: Writing - review & editing, Supervision.

Declaration of competing interest

The author is an Editorial Board Member/Editor-in-Chief/Associate Editor/Guest Editor for Earthquake Research Advances and was not involved in the editorial review or the decision to publish this article.

Author agreement and acknowledgement

All authors agree for this publication. This study used P- and S-wave arrival time data reported in the JMA unified catalog, and seismograms collected and stored by NIED Hi-net (National Research Institute for Earth Science and Disaster Resilience, 2019, https://doi.org/10.17598/ NIED.0003). We thank useful comments/discussions with Drs. Hongfeng Yang, William Ellsworth, Shiqing Xu, Shengji Wei, reviewer Piero Poli, an anonymous reviewer and the ERA editor. Z.P. and P.M. are partially supported by U.S. National Science Foundation grants EAR-1925965 and RISE-2425889. Q.W. and M.C. acknowledge support from the European Research Council under the European Union Horizon 2020 research and innovation program (grant agreement no. 742335, F-IMAGE)

References

[1]

Aki K., 1984. Asperities, barriers, characteristic earthquakes and strong motion prediction. J. Geophys. Res. Solid Earth 89 (B7), 5867-5872. https://doi.org/10.1029/JB089iB07p05867.

[2]

Amezawa Y., Hiramatsu Y., Miyakawa A., Imanishi K., Otsubo M., 2023. Long-living earthquake swarm and intermittent seismicity in the northeastern tip of the Noto Peninsula, Japan. Geophys. Res. Lett. 50, e2022GL102670. https://doi.org/10.1029/2022GL102670.

[3]

Beroza G.C., Segou M., Mousavi S.M., 2021. Machine learning and earthquake forecasting - next steps. Nat. Commun. 12 (1), 4761. https://doi.org/10.1038/s41467-021-24952-6.

[4]

Cabrera L., Poli P., Frank W.B., 2022. Tracking the spatio-temporal evolution of foreshocks preceding the Mw 6.12009 L'Aquila earthquake. J. Geophys. Res. Solid Earth 127, e2021JB023888. https://doi.org/10.1029/2021JB023888.

[5]

Cabrera L., Poli P., 2023. A struggled rupture initiation of the Mw 6.12009 L'Aquila earthquake. Geophys. Res. Lett. 50, e2022GL102337. https://doi.org/10.1029/2022GL102337.

[6]

Chuang L.Y., Peng Z., Lei X., Wang B., Liu J., Zhai Q., Tu H., 2023. Foreshocks of the 2010 Mw 6.7 Yushu, China Earthquake occurred near an extensional step-over. J. Geophys. Res. Solid Earth 128, e2022JB025176. https://doi.org/10.1029/2022JB025176.

[7]

Ding X., Xu S., Xie Y., van den Ende M., Premus J., Ampuero J.-P., 2023. The sharp turn: backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake. Seismica 2 (3). https://doi.org/10.26443/seismica.v2i3.1083.

[8]

Dong P., Chen R., Xia K., Yao W., Peng Z., Elsworth D., 2024. Earthquake delay and rupture velocity in near-field dynamic triggering dictated by stress-controlled nucleation. Seismol Res. Lett. 94 (2A), 913-924. https://doi.org/10.1785/0220220264.

[9]

Ellsworth W.L., Bulut F., 2018. Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nat. Geosci. 11, 531-535. https://doi.org/10.1038/s41561-018-0145-1.

[10]

Enescu B., Mori J., Miyazawa M., 2007. Quantifying early aftershock activity of the 2004 mid-Niigata Prefecture earthquake (Mw6.6). J. Geophys. Res. 112, B04310. https://doi.org/10.1029/2006JB004629.

[11]

Fujii Y., Satake K., 2024. Slip distribution of the 2024 Noto Peninsula earthquake (MJMA 7.6) estimated from tsunami waveforms and GNSS data. Earth Planets Space 76, 44. https://doi.org/10.1186/s40623-024-01991-z.

[12]

Goldberg D.E., Taymaz T., Reitman N.G., Hatem A.E., Yolsal-Çevikbilen S., Barnhart W.D., Irmak T.S., Wald D.J., Öcalan T., Yeck W.L., Özkan B., 2023. Rapid characterization of the February 2023 Kahramanmaraş Türkiye, earthquake sequence. The Seismic Record 3 (2), 156-167. https://doi.org/10.1785/0320230009.

[13]

Gvirtzman S., Fineberg J., 2021. Nucleation fronts ignite the interface rupture that initiates frictional motion. Nat. Phys. 17 (9), 1037-1042. https://doi.org/10.1038/s41567-021-01299-9.

[14]

Hardebeck J.L., Harris R.A., 2022. Earthquakes in the shadows: why aftershocks occur at surprising locations. The Seismic Record 2 (3), 207-216. https://doi.org/10.1785/0320220023.

[15]

Huang Y., Li H., Ma Y., Ma J., 2023. Long-term spatial-temporal evolution of seismicity of the 2010 Ms 7.1 Yushu, Qinghai, China earth- quake. IEEE Trans. Geosci. Rem. Sens. 61, 1-9. https://doi.org/10.1109/TGRS.2022.3231878.

[16]

Ishii M., Shearer P.M., Houston H., Vidale J.E., 2005. Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature 435 (7044), 933-936. https://doi.org/10.1038/nature03675.

[17]

Ishikawa Y., Bai L., 2024. The 2024 Mj7.6 Noto Peninsula, Japan earthquake caused by the fluid flow in the crust. Earthq. Res. Adv. 4 (3), 100292. https://doi.org/10.1016/j.eqrea.2024.100292.

[18]

Jones L.M., Wang B., Xu S., Fitch T.J., 1982. The foreshock sequence of the february 4, 1975, Haicheng earthquake (M = 7.3). J. Geophys. Res. 87 (B6), 4575-4584. https:// doi.org/10.1029/JB087iB06p04575.

[19]

Kato A., Sakai S., Iidaka T., Iwasaki T., Kurashimo E., Igarashi T., Hirata N., Kanazawa T., Katsumata K., Takahashi H., Honda R., 2011. Anomalous depth dependency of the stress field in the 2007 Noto Hanto, Japan, earthquake: potential involvement of a deep fluid reservoir. Geophys. Res. Lett. 38, L06306. https:// doi.org/10.1029/2010GL046413.

[20]

Kato A., Fukuda J., Nakagawa S., Obara K., 2016. Foreshock migration preceding the 2016 Mw 7.0 Kumamoto earthquake, Japan. Geophys. Res. Lett. 43, 8945-8953. https://doi.org/10.1002/2016GL070079.

[21]

Kato A., Obara K., 2014. Step-like migration of early aftershocks following the 2007 Mw 6.7 Noto-Hanto earthquake, Japan. Geophys. Res. Lett. 41, 3864-3869. https:// doi.org/10.1002/2014GL060427.

[22]

Kato A., Ben-Zion Y., 2021. He generation of large earthquakes. Nat. Rev. Earth Environ. 2, 26-39. https://doi.org/10.1038/s43017-020-00108-w,2021.

[23]

Kato A., 2024. Implications of fault-valve behavior from immediate aftershocks following the 2023 Mj6.5 earthquake beneath the Noto Peninsula, central Japan. Geophys. Res. Lett. 51, e2023GL106444. https://doi.org/10.1029/2023GL106444.

[24]

Kato A., Nakagawa S., Kurashimo E., Sakai S., Emoto K., Matsumoto S., Peng Z., 2024. A Long-Persisting Seismic Swarm and the Subsequent Nucleation of the 2024 M7.6 Noto Earthquake. Abstract submitted to the 2024 AGU annual meeting, Washington D.C., 9-13 December 2024.

[25]

Kiser E., Ishii M., 2017. Back-projection imaging of earthquakes. Ann. Rev. Earth Planet. Sci. 45, 271-299. https://doi.org/10.1146/annurev-earth-063016-015801.

[26]

Krüger F., Ohrnberger M., 2005. Tracking the rupture of the Mw = 9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature 435, 937-939. https:// doi.org/10.1038/nature03696.

[27]

Kwiatek G., Martínez-Garzón P., Becker D., Dresen G., Cotton F., Beroza G.C., Acarel D., Ergintav S., Bohnhoff M., 2023. Months-long seismicity transients preceding the 2023MW 7.8 Kahramanmaraş earthquake, Türkiye. Nature Comm 14, 7534. https://doi.org/10.1038/s41467-023-42419-8.

[28]

Lei X., 2024. Fluid-driven Fault Nucleation, Rupture Processes, and Permeability Evolution in Oshima Granite-Preliminary Results and Acoustic Emission Datasets. Geohazard Mechanics. https://doi.org/10.1016/j.ghm.2024.04.003.

[29]

Lei X., Wang Z., Ma S., He C., 2024. Step-over of strike-slip faults and overpressure fluid favor occurrence of foreshocks: insights from the 1975 Haicheng fore-mainaftershock sequence, China. Earthq. Res. Adv. 100237. https://doi.org/10.1016/j.eqrea.2023.100237.

[30]

Lengliné O., Enescu B., Peng Z., Shiomi K., 2012. Decay and migration of the early aftershock activity following the Tohoku Mw9.0 2011 earthquake. Geophys. Res. Lett. 39, L18309. https://doi.org/10.1029/2012GL052797.

[31]

Liu Y., McGuire J.J., Behn M.D., 2020. Aseismic transient slip on the gofar transform fault, East pacific rise. In: Proc. Nat. Acad. Sci. https://doi.org/10.1073/pnas.1913625117.

[32]

Liu M., Tan Y.J., Lei X., Li H., Zhang Y., Wang W., 2024c. Intersection between tectonic faults and magmatic systems promotes swarms with large-magnitude earthquakes around the Tengchong volcanic field, southeastern Tibetan Plateau. Geology 52 (4), 302-307. https://doi.org/10.1130/G51796.1.

[33]

Liu Y., Wu Z., Zhang Y., 2024a. The January 1, 2024, Noto peninsula, Japan, Mw7.5 earthquake as a plausible 'dragon king' event. Rev. Geophys. Planet. Phys. 55. https://doi.org/10.19975/j.dqyxx.2024-003 (in Chinese with English abstract).

[34]

Liu Y., Wu Z., Zhang Y., Yin X., 2024b. Tracing the pace of an approaching 'seismic dragon king': additional evidence for the Noto earthquake swarm and the 2024 MW 7.5 Noto earthquake. Earthq. Res. Adv. 100290. https://doi.org/10.1016/j.eqrea.2024.100290.

[35]

Ma Z., Zeng H., Luo H., Liu Z., Jiang Y., Aoki Y., Wang W., Itoh Y., Lyu M., Cui Y., Yun S.H., Hill E.M., Wei S.J., 2024. Slow rupture in a fluid-rich fault zone initiated the 2024 Mw 7.5 Noto earthquake. Science 385, 866-871. https://doi.org/10.1126/science.ado5143.

[36]

Martínez-Garzón P., Poli P., 2024. Cascade and pre-slip models oversimplify the complexity of earthquake preparation in nature. Commun. Earth Environ. 5, 120. https://doi.org/10.1038/s43247-024-01285-y.

[37]

Matsubara M., Ishiyama T., No T., Uehira K., Mochizuki M., Kanazawa T., Takahashi N., Kamiya S.I., 2022. Seismic velocity structure along the Sea of Japan with large events derived from seismic tomography for whole Japanese Islands including reflection survey data and NIED MOWLAS Hi-net and S-net data. Earth Planets Space 74, 171. https://doi.org/10.1186/s40623-022-01724-0.

[38]

McLaskey G.C., 2019. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res. Solid Earth 124 (12). https://doi.org/10.1029/2019JB018363,882-12,904.

[39]

Nakajima J., 2022. Crustal structure beneath earthquake swarm in the Noto peninsula, Japan. Earth Planets Space 74, 160. https://doi.org/10.1186/s40623-022-01719-x.

[40]

Nishimura T., Hiramatsu Y., Ohta Y., 2023. Episodic transient deformation revealed by the analysis of multiple GNSS networks in the Noto Peninsula, central Japan. Sci. Rep. 13, 8381. https://doi.org/10.1038/s41598-023-35459-z.

[41]

Normile D., 2024. Mysterious seismic swarm foreshadowed monster Japan earthquake. Science. https://doi.org/10.1126/science.zd9zb6x.

[42]

Okada Y., 1992. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82 (2), 1018-1040. https://doi.org/10.1785/BSSA0820021018.

[43]

Okuwaki R., Yagi Y., Murakami A., Fukahata Y., 2024. A multiplex rupture sequence under complex fault network due to preceding earthquake swarms during the 2024 Mw 7.5 Noto Peninsula, Japan, earthquake. Geophys. Res. Lett. 51, e2024GL109224. https://doi.org/10.1029/2024GL109224.

[44]

Ohnaka M., 1996. Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture:a physical model of earthquake generation processes. Proc. Natl. Acad. Sci. 93 (9), 3795-3802. https://doi.org/10.1073/pnas.93.9.3795.

[45]

Ozacar A.A., Beck S.L., 2004. The 2002 Denali fault and 2001 Kunlun fault earthquakes: complex rupture processes of two large strike-slip events. Bull. Seismol. Soc. Am. 94 (6B), S278-S292.

[46]

Peng Z., Lei X., 2024. Physical mechanisms of earthquake nucleation and foreshocks: cascade triggering, aseismic slip, or fluid flows? Earthq. Res. Adv. https://doi.org/10.31223/X5TQ4Minreview.

[47]

Peng Z., Vidale J.E., Ishii M., Helmstetter A., 2007. Seismicity rate immediately before and after main shock rupture from high-frequency waveforms in Japan. J. Geophys. Res. 112, B03306. https://doi.org/10.1029/2006JB004386.

[48]

Peng Z., Zhao P., 2009. Migration of early aftershocks following the 2004 Parkfield earthquake. Nat. Geosci. 2 (12), 877-881. https://doi.org/10.1038/ngeo697.

[49]

Perfettini H., Avouac J.P., 2007. Modeling afterslip and aftershocks following the 1992 Landers earthquake. J. Geophys. Res. 112 (B7). https://doi.org/10.1029/2006jb004399.

[50]

Pritchard M.E., Allen R.M., Becker T.W., Behn M.D., Brodsky E.E., Bürgmann R., Ebinger C., Freymueller J.T., Gerstenberger M., Haines B., Kaneko Y., Jacobsen S.D., Lindsey N., McGuire J.J., Page M., Ruiz S., Tolstoy M., Wallace L., Walter W.R., Wilcock W., Vincent H., 2020. New opportunities to study earthquake precursors. Seismol. Res. Lett. 91 (5), 2444-2447. https://doi.org/10.1785/0220200089.

[51]

Ren C., Wang Z., Taymaz T., Hu N., Luo H., Zhao Z., Yue H., Song X., Shen Z., Xu H., Geng J., 2024. Supershear triggering and cascading fault ruptures of the 2023 Kahramanmaraş Türkiye, earthquake doublet. Science 383 (6680), 305-311. https://doi.org/10.1126/science.adi1519.

[52]

Ross Z.E., Rollins C., Cochran E.S., Hauksson E., Avouac J.-P., Ben-Zion Y., 2017. Aftershocks driven by afterslip and fluid pressure sweeping through a fault-fracture mesh. Geophys. Res. Lett. 44 (16). https://doi.org/10.1002/2017GL074634.

[53]

Ross Z.E., Idini B., Jia Z., Stephenson O.L., Zhong M., Wang X., Zhan Z., Simons M., Fielding E.J., Yun S.H., Hauksson E., 2019. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science 366 (6463), 346-351. https://doi.org/10.1126/science.aaz0109.

[54]

Shapiro S.A., Huenges E., Borm G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int. 131, F15-F18.

[55]

Shelly D.R., 2024. Examining the connections between earthquake swarms, crustal fluids, and large earthquakes in the context of the 2020-2024 Noto Peninsula, Japan, earthquake sequence. Geophys. Res. Lett. 51, e2023GL107897. https://doi.org/10.1029/2023GL107897.

[56]

Sornette D., Ouillon G., 2012. Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur. Phys. J. Spec. Top. 205 (1), 1-26. https://doi.org/10.1140/epjst/e2012-01559-5.

[57]

Stein R.S., 1999. The role of stress transfer in earthquake occurrence. Nature 402, 605-609.

[58]

Stein R.S., Bird P., 2024. Why do great continental transform earthquakes nucleate on branch faults? Seismol. Res. Lett. https://doi.org/10.1785/0220240175inpress.

[59]

Toda S., Stein R.S., 2024. Intense seismic swarm punctuated by a magnitude 7.5 Japan shock. Temblor. https://doi.org/10.32858/temblor.333.

[60]

Waldhauser F., Ellsworth W.L., 2000. A double-difference earthquake location algorithm: method and application to the northern hayward fault, California. Bull. Seismol. Soc. Am. 90 (6), 1353-1368. https://doi.org/10.1785/0120000006.

[61]

Wang D., Kawakatsu H., Mori J., Ali B., Ren Z., Shen X.,2016 Backprojection analyses from four regional arrays for rupture over a curved dipping fault: the Mw 7.724

[62]

September 2013 Pakistan earthquake. J. Geophys. Res. Solid Earth 121, 1948-1961. https://doi.org/10.1002/2015JB012168.

[63]

Wang K., Peng Z., Liang S., Luo J., Zhang K., He C., 2024a. Migrating foreshocks driven by a slow slip event before the 2021 MW 6.1 Yangbi, China earthquake. J. Geophys. Res. Solid Earth 129, e2023JB027209. https://doi.org/10.1029/2023JB027209.

[64]

Wang Q.-Y., Cui X., Frank W.B., Lu Y., Hirose T., Obara K., 2024b. Untangling the environmental and tectonic drivers of the Noto earthquake swarm in Japan. Sci. Adv. 10. https://doi.org/10.1126/sciadv.ado1469eado1469(2024).

[65]

Xu L., Ji C., Meng L., Ampuero J.P., Zhang Y., Mohanna S., Aoki Y., 2024. Dualinitiation ruptures in the 2024 Noto earthquake encircling a fault asperity at a swarm edge. Science 385 (6711), 871-876. https://doi.org/10.1126/science.adp049.

[66]

Yang S., Sang C., Hu Y., Wang K., 2024. Coseismic and early postseismic deformation of the 2024 Mw7.45 Noto Peninsula earthquake. Geophys. Res. Lett. 51, e2024GL108843. https://doi.org/10.1029/2024GL108843.

[67]

Yao Huang D.Y., Peng Z., Castro R.R., 2020. Detailed investigation of the foreshock sequence of the 2010 Mw 7.2 El Mayor-Cucapah earthquake. J. Geophys. Res. 124, e2019JB019076. https://doi.org/10.1029/2019JB019076.

[68]

Yoshida K., Uno M., Matsuzawa T., Yukutake Y., Mukuhira Y., Sato H., Yoshida T., 2023a. Upward earthquake swarm migration in the northeastern Noto Peninsula, Japan, initiated from a deep ring-shaped cluster: possibility of fluid leakage from a hidden magma system. J. Geophys. Res. Solid Earth 128, e2022JB026047. https:// doi.org/10.1029/2022JB026047.

[69]

Yoshida K., Takagi R., Fukushima Y., Ando R., Ohta Y., Hiramatsu Y., 2024. Role of a hidden fault in the early process of the 2024Mw 7.5 Noto Peninsula earthquake. Geophys. Res. Lett. 51. https://doi.org/10.1029/2024GL110993e2024GL110993.

[70]

Yoshida K., Uchida N., Matsumoto Y., Orimo M., Okada T., Hirahara S., et al., 2023b. Updip fluid flow in the crust of the northeastern Noto Peninsula, Japan, triggered the 2023 Mw 6.2 Suzu earthquake during swarm activity. Geophys. Res. Lett. 50, e2023GL106023. https://doi.org/10.1029/2023GL106023.

[71]

Yuen D.A., Scruggs M.A., Spera F.J., Zheng Y., Hu H., McNutt S.R., Thompson G., Mandli K., Keller B.R., Wei S.S., Peng Z., 2022. Under the surface: pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano. Earthq. Res. Adv. 2 (3), 100134. https://doi.org/10.1016/j.eqrea.2022.100134.

[72]

Zhou Y., Ren C., Ghosh A., Meng H., Fang L., Yue H., Zhou S., Su Y., 2022. Seismological characterization of the 2021 Yangbi foreshock-mainshock sequence, Yunnan, China: more than a triggered cascade. J. Geophys. Res. Solid Earth 127 (8), e2022JB024534. https://doi.org/10.1029/2022JB024534.

[73]

Zhu G., Yang H., Tan Y.J., Jin M., Li X., Yang W., 2022. The cascading foreshock sequence of the Ms 6.4 Yangbi earthquake in Yunnan, China. Earth Planet Sci. Lett. 591, 117594. https://doi.org/10.1016/j.epsl.2022.117594.

PDF (16607KB)

79

Accesses

0

Citation

Detail

Sections
Recommended

/