Population synthesis with deep generative model: a joint household-individual approach
Abdoul Razac Sané , Rachid Belaroussi , Pierre Hankach , Pierre-Olivier Vandanjon
Population synthesis with deep generative model: a joint household-individual approach
This paper introduces two novel deep generative frameworks for synthetic population generation that jointly model household and individual attributes. In leveraging Variational Autoencoders (VAEs), we propose herein the SVAE-Pop2 method, which employs a single VAE with fixed-size padded inputs, along with the MVAE-Pop2 method, which uses dedicated models for various household sizes. Evaluated on a French household travel survey dataset, our experiments reveal that while both approaches effectively reproduce the actual population’s characteristics, MVAE-Pop2 achieves greater fidelity in joint attribute distributions. The proposed methodologies suggest improvements in agent-based simulations and urban modeling by means of generating realistic, multi-layered synthetic populations.
Synthetic population / Machine learning / Deep generative model / Variational autoencoders / Household-individual / Two layers
| [1] |
Aemmer, Z., & MacKenzie, D. (2022). Generative population synthesis for joint household and individual characteristics. Computers, Environment and Urban Systems,96, 101852. https://doi.org/10.1016/j.compenvurbsys.2022.101852 |
| [2] |
Borysov, S. S., Rich, J., & Pereira, F. C. (2019). How to generate micro-agents? A deep generative modeling approach to population synthesis. Transportation Research Part C: Emerging Technologies,106, 73–97. https://doi.org/10.1016/j.trc.2019.07.006 |
| [3] |
Borysov, S. S., Rich, J., & Pereira, F. C. (2019b). Scalable Population Synthesis with Deep Generative Modeling. Transportation Research Part C: Emerging Technologies, 106, 73–97. arXiv:1808.06910 |
| [4] |
Bouzouina, L., Baraklianos, I., Bonnel, P., & Aissaoui, H. (2021). Renters vs owners: The impact of accessibility on residential location choice. Evidence from lyon urban area, france (1999–2013). Transport Policy, 109, 72–84. https://doi.org/10.1016/j.tranpol.2021.05.022 |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Département-Loire-Atlantique (2015). Enquête déplacements (2015) en Loire-Atlantique. https://data.loire-atlantique.fr/explore/dataset/224400028_enquete-deplacements-en-loire-atlantique/information/ Accessed 06 June 2023 |
| [9] |
Duda, R. O., Stork, D. G., & Hart, P. E. (2001). Pattern classification (2nd ed.). Wiley. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Goeyvaerts, N., Santermans, E., Potter, G. E., Torneri, A., Kerckhove, K. V., Willem, L., Aerts, M., Beutels, P., & Hens, N. (2017). Household members do not contact each other at random: implications for infectious disease modelling. Proceedings of the Royal Society B: Biological Sciences,285. https://doi.org/10.1101/220202 |
| [14] |
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. arXiv:1406.2661. Publisher: arXiv Version Number: 1. |
| [15] |
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., & Lerchner, A. (2017). beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. In International Conference on Learning Representations. https://openreview.net/forum?id=Sy2fzU9gl Accessed 09 May 2023 |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Qian, X., Gangwal, U., Dong, S., & Davidson, R. (2024). A Deep Generative Framework for Joint Households and Individuals Population Synthesis. arXiv:2407.01643 |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., & et al. (2016). Conditional image generation with pixelcnn decoders. Advances in neural information processing systems, 29. https://proceedings.neurips.cc/paper_files/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf. Accessed 04 June 2024 |
| [25] |
|
| [26] |
|
| [27] |
Yameogo, B. F., Vandanjon, P.-O., Gastineau, P., & Hankach, P. (2021). Generating a Two-Layered Synthetic Population for French Municipalities: Results and Evaluation of Four Synthetic Reconstruction Methods. Journal of Artificial Societies and Social Simulation, 24(2), 5. https://doi.org/10.18564/jasss.4482 |
| [28] |
Zeng, X., Wang, F., Luo, Y., gu Kang, S., Tang, J., Lightstone, F. C., Fang, E. F., Cornell, W., Nussinov, R., & Cheng, F. (2022). Deep generative molecular design reshapes drug discovery. Cell Reports Medicine, 3(12), 100794. https://doi.org/10.1016/j.xcrm.2022.100794 |
The Author(s)
/
| 〈 |
|
〉 |