Shaping future sustainable cities with AI-powered urban informatics: Toward human-AI symbiosis

Yang Yue , Guanyu Yan , Tian Lan , Rui Cao , Qili Gao , Wenxiu Gao , Bo Huang , Guan Huang , Zhengdong Huang , Zihan Kan , Xiang Li , Dong Liu , Xintao Liu , Ding Ma , Lili Wang , Jizhe Xia , Xiaochun Yang , Meng Zhou , Anthony Gar-On Yeh , Renzhong Guo , Christophe Claramunt

Computational Urban Science ›› 2025, Vol. 5 ›› Issue (1) : 31

PDF
Computational Urban Science ›› 2025, Vol. 5 ›› Issue (1) : 31 DOI: 10.1007/s43762-025-00190-0
Opinion Paper

Shaping future sustainable cities with AI-powered urban informatics: Toward human-AI symbiosis

Author information +
History +
PDF

Abstract

The rapid evolution of Artificial Intelligence (AI) has ushered in a transformative era for urban studies, moving beyond traditional analytical methods to advanced Deep Learning architectures, with Transformers model in the spotlight. Yet, unlike bioinformatics, which has successfully utilised AI to decode static biological systems, or cheminformatics, which optimises chemical synthesis, urban informatics grappled with human-centric complexity that encompass subjective perceptions, socio-political dynamics, and multifaceted challenges that defy deterministic solutions. To avoid techno-solutionist pitfalls, we convened an interdisciplinary group of scholars to explore AI-powered urban informatics and proposed a Human-AI Symbiosis framework to foster sustainable cities and advance urban research. This Opinion paper synthesises insights into four key research directions, focusing on the evolving landscape of urban informatics and its potential to drive innovation in sustainable cities, policy-making, and societal development.

Cite this article

Download citation ▾
Yang Yue, Guanyu Yan, Tian Lan, Rui Cao, Qili Gao, Wenxiu Gao, Bo Huang, Guan Huang, Zhengdong Huang, Zihan Kan, Xiang Li, Dong Liu, Xintao Liu, Ding Ma, Lili Wang, Jizhe Xia, Xiaochun Yang, Meng Zhou, Anthony Gar-On Yeh, Renzhong Guo, Christophe Claramunt. Shaping future sustainable cities with AI-powered urban informatics: Toward human-AI symbiosis. Computational Urban Science, 2025, 5(1): 31 DOI:10.1007/s43762-025-00190-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aher, G.V., Arriaga, R.I., Kalai, A.T. (2023). Using large language models to simulate multiple humans and replicate human subject studies. A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, & J. Scarlett (Eds.), Proceedings of the 40th International Conference on Machine Learning (Vol. 202, pp. 337–71). PMLR.

[2]

Almulhim, A.I., Sharifi, A., Aina, Y.A., Ahmad, S., Mora, L., Filho, W.L., Abubakar, I.R. (2024). Charting sustainable urban development through a systematic review of SDG11 research. Nature Cities (prepublish), 1–9.

[3]

AnnaswamyAM, MalekpourAR, BarosS. Emerging research topics in control for smart infrastructures. Annual Reviews in Control, 2016, 42: 259-270.

[4]

Assran, M., Duval, Q., Misra, I., Bojanowski, P., Vincent, P., Rabbat, M., Ballas, N. (2023). Self-supervised learning from images with a joint-embedding predictive architecture. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (p. 15619–29).

[5]

Baheti, R., & Gill, H. (2011). Cyber-physical systems. T. Samad & A. Annaswamy (Eds.), The impact of control technology (Vol. 12, p. 161–166). Piscataway, NJ, USA: IEEE Control Systems Society.

[6]

BattyMThe new science of cities, 2013The MIT Press.

[7]

BattyM. Ai and design. Environment and Planning B, 2024, 514799-802.

[8]

BattyM. Digital twins in city planning. Nature Computational Science, 2024, 43192-199.

[9]

Caldarelli, G., Arcaute, E., Barthelemy, M., Batty, M., Gershenson, C., Helbing, D., Fernández-Villacañas, J.L. (2023). The role of complexity for digital twins of cities. Nature Computational Science, 3, 374–81.

[10]

Cao, R., Gao, Q.-L., Qiu, G. (2023, September 5). Responsible urban intelligence: Towards a research agenda. Spatial data science symposium 2023 short paper proceedings. UC Santa Barbara: Center for Spatial Studies.

[11]

Caros, N.S., & Zhao, J. (2024). The need for an interdisciplinary approach to remote work and urban policy. Nature Cities(prepublish), 1–8.

[12]

Chen, M., Claramunt, C., Çöltekin, A., Liu, X., Peng, P., Robinson, A.C., … Lü, G. (2023). Artificial intelligence and visual analytics in geographical space and cyberspace: Research opportunities and challenges. Earth-Science Reviews, 241, 104438, https://doi.org/10.1016/j.earscirev.2023.104438

[13]

ChuC, ZhangH, WangP, LuF. Simulating human mobility with a trajectory generation framework based on diffusion model. International Journal of Geographical Information Science, 2024, 385847-878.

[14]

Claramunt, C., & Dube, M.P. (2023). A brief review of the evolution of giscience since the ncgia research agenda initiatives. Journal of Spatial Information Science(26)

[15]

CresswellTKitchinR, ThriftN. Place. International encyclopedia of human geography, 2009Elsevier169-177. 8

[16]

CugurulloF, CaprottiF, CookM, KarvonenA, McGuirkP, MarvinS. The rise of ai urbanism in post-smart cities: A critical commentary on urban artificial intelligence. Urban Studies, 2024, 6161168-82.

[17]

Dong, L., Duarte, F., Duranton, G., Santi, P., Barthelemy, M., Batty, M., … Ratti, C. (2024, 2). Defining a city — delineating urban areas using cell-phone data. Nature Cities, 1(2), 117–125, https://doi.org/10.1038/s44284-023-00019-z

[18]

FangX, CheS, MaoM, ZhangH, ZhaoM, ZhaoX. Bias of ai-generated content: An examination of news produced by large language models. Scientific Reports, 2024, 1415224.

[19]

Foth, M. (2008a). Handbook of research on urban informatics: The practice and promise of the real-time city. Hershey, PA: Information Science Reference Imprint of: IGI Publishing.

[20]

Foth, M. (Ed.). (2008b). Handbook of research on urban informatics: The practice and promise of the real-time city. Hershey, PA: IGI Global.

[21]

Fox, S., & Wolf, L.J. (2024). People make places urban. Nature Cities, 1(12), 1–8, Fu, Y. Towards relational spatiality: Space, relation and simmel’s modernity. Sociology, 2022, 563591-607.

[22]

Gao, S. (2020). Geospatial artificial intelligence (GeoAI). Oxford Bibliographies in Geography. https://doi.org/10.1093/obo/9780199874002-0228

[23]

GlaeserETriumph of the city: How our greatest invention makes us richer, smarter, greener, healthier, and happier, 2011The Penguin Press

[24]

GoodchildMF, ConnorD, FotheringhamAS, FrazierA, KedronP, LiW, TongD. Digital twins in urban informatics. Urban Informatics, 2024, 3116.

[25]

Ha, D., & Schmidhuber, J. (2018). Recurrent world models facilitate policy evolution. S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 31). Montréal, CANADA: Curran Associates, Inc.

[26]

HeideggerMThe question concerning technology, and other essays, 1977Harper & Row

[27]

HuY, DengC, ZhouZ. A semantic and sentiment analysis on online neighborhood reviews for understanding the perceptions of people toward their living environments. Annals of the American Association of Geographers, 2019, 10941052-1073.

[28]

Hu, Y., Mai, G., Cundy, C., Choi, K., Lao, N., Liu, W., Joseph, K. (2023). Geoknowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages. International Journal of Geographical Information Science, 37(11), 2289–318, https://doi.org/10.1080/13658816.2023.2266495/

[29]

HuangF, LvJ, YueY. Jointly spatial-temporal representation learning for individual trajectories. Computers, Environment and Urban Systems, 2024, 112. 102144

[30]

HullRB, LamM, VigoG. Place identity: Symbols of self in the urban fabric. Landscape and Urban Planning, 1994, 282109-120.

[31]

Isagah, T., & Ben Dhaou, S. (2024). Responsible and inclusive urban AI: Opportunities and challenges for advancing sustainable development goals. United Nations University Operating Unit on Policy-Driven Electronic Governance.

[32]

JacobsJThe death and life of great american cities, 1961Random House

[33]

JangKM, ChenJ, KangY, KimJ, LeeJ, DuarteF, RattiC. Place identity: A generative ai’s perspective. Humanities and Social Sciences Communications, 2024, 1111156.

[34]

Janowicz, K. (2023). Philosophical foundations of geoai: Exploring sustainability, diversity, and bias in geoai and spatial data science. Handbook of geospatial artificial intelligence (pp. 26–42). CRC Press.

[35]

JanowiczK, GaoS, McKenzieG, HuY, BhaduriB. Geoai: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 2020, 344. 625636

[36]

JiangF, MaJ, WebsterCJ, ChiaradiaAJ, ZhouY, ZhaoZ, ZhangX. Generative urban design: A systematic review on problem formulation, design generation, and decision-making. Progress in Planning, 2024, 180. 100795

[37]

Jobin, A., Ienca, M., Vayena, E. (2019, 09 01). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399, https://doi.org/10.1038/s42256-019-0088-2.

[38]

Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., Huber, P. (2016). Artificial intelligence and computer science in education: From kindergarten to university. 2016 ieee frontiers in education conference (fie) (p. 1–9).

[39]

KangY, GaoS, RothRE. Artificial intelligence studies in cartography: A review and synthesis of methods, applications, and ethics. Cartography and Geographic Information Science, 2024, 514599-630.

[40]

Kapp, A., Hansmeyer, J., Mihaljević, H. (2023). Generative models for synthetic urban mobility data: A systematic literature review. ACM Comput. Surv, 56(4), https://doi.org/10.1145/3610224

[41]

LeCun, Y.(2022, Jun 27).A path towards autonomous machine intelligence. OpenReview.

[42]

Li, D., Yu, W., Shao, Z. (2021, 03 29). Smart city based on digital twins. Computational Urban Science, 1(1), 4, https://doi.org/10.1007/s43762-021-00005-yRetrieved from https://doi.org/10.1007/s43762-021-00005-y

[43]

Li, X., Huang, F., Lv, J., Xiao, Z., Li, G., Yue, Y. (2024). Be more real: Travel diary generation using LLM agents and individual profiles. arXiv preprint arXiv:2407.18932, , arXiv:2407.18932 [cs.CY]

[44]

LiuK, JinX, ChengS, GaoS, YinL, LuF. Act2loc: A synthetic trajectory generation method by combining machine learning and mechanistic models. International Journal of Geographical Information Science, 2024, 383407-431.

[45]

Liu, P., & Biljecki, F. (2022). A review of spatially-explicit GeoAI applications in urban geography. International Journal of Applied Earth Observation and Geoinformation, 112.

[46]

LiuY, ChenY, HanL. Bioinformatics: Advancing biomedical discovery and innovation in the era of big data and artificial intelligence. The Innovation Medicine, 2023, 11100012-100021.

[47]

Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (2015). Geographic information science & systems (4th ed.). John Wiley & Sons Inc.

[48]

Mai, G., Huang, W., Sun, J., Song, S., Mishra, D., Liu, N., Lao, N. (2024). On the opportunities and challenges of foundation models for GeoAI (vision paper). ACM Trans. Spatial Algorithms Syst, 10(2), https://doi.org/10.1145/10.1145/365307050.

[49]

Mai, G., Li, Z., Lao, N. (2023). Spatial representation learning in geoai. Handbook of geospatial artificial intelligence (1st ed., p. 22). CRC Press.

[50]

MarcuseHOne dimensional man: Studies in the ideology of advanced industrial society, 1964Beacon Press

[51]

Mazumder, S.K., Enslin, J.H., Blaabjerg, F. (2021). Guest editorial: Special issue on sustainable energy through power-electronic innovations in cyber-physical systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(5), 5142–5, https://doi.org/10.1109/JESTPE.2021.3109578

[52]

Nelson, T., Frazier, A.E., Kedron, P., Dodge, S., Zhao, B., Goodchild, M., … Wilson, J. (2025). A research agenda for giscience in a time of disruptions. International Journal of Geographical Information Science, 39(1), 1–24,

[53]

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Zoph, B. (2024). GPT-4 technical report.

[54]

PappalardoL, ManleyE, SekaraV, AlessandrettiL. Future directions in human mobility science. Nature Computational Science, 2023, 37588-600.

[55]

Saifi, I., Bhat, B.A., Hamdani, S.S., Bhat, U.Y., Lobato-Tapia, C.A., Mir, M.A., … Ganie, S.A. (2024). Artificial intelligence and cheminformatics tools: a contribution to the drug development and chemical science. Journal of Biomolecular Structure and Dynamics, 42(12), 6523–6541,

[56]

Shaw, S.-L., Ye, X., Goodchild, M., Sui, D. (2024, 11 06). Human dynamics research in giscience: challenges and opportunities. Computational Urban Science, 4(1), 31, https://doi.org/10.1007/s43762-024-00144-y Retrieved from https://doi.org/10.1007/s43762-024-00144-y

[57]

Shi, W., Goodchild, M.F., Batty, M., Kwan, M.-P., Zhang, A. (Eds.). (2021). Urban informatics. Springer Singapore.

[58]

TuanY-FGaleS, OlssonG. Space and place: Humanistic perspective. Philosophy in geography, 1979Springer, Netherlands387-427.

[59]

Ye, X., Du, J., Han, Y., Newman, G., Retchless, D., Zou, L., … Cai, Z. (2023). Developing human-centered urban digital twins for community infrastructure resilience: A research agenda. Journal of Planning Literature, 38(2), 187–199, https://doi.org/10.1177/08854122221137861 (PMID: 37153810)61.

[60]

Ye, X., Yigitcanlar, T., Goodchild, M., Huang, X., Li, W., Shaw, S.-L., … and, G.N. (2025). Artificial intelligence in urban science: why does it matter? Annals of GIS, 0(0), 1–9, https://doi.org/10.1080/19475683.2025.2469110 Retrieved from https://doi.org/10.1080/19475683.2025.2469110https://doi.org/10.1080/19475683.2025.2469110

[61]

YehAG. From urban modelling, gis, the digital, intelligent, and the smart city to the digital twin city with ai. Environment and Planning b: Urban Analytics and City Science, 2024, 5151085-8

[62]

Yue, Y., Liu, Y., Chen, Y., He, L., Chen, C., Li, W., … Cao, K. (2022). Integration path of spatial and geo-computing and computational social science. Geomatics and Information Science of Wuhan University, 47(1), 1–18, https://doi.org/10.13203/j.whugis20210619

[63]

Zhang, F., Zhou, B., Ratti, C., Liu, Y. (2019). Discovering place-informative scenes and objects using social media photos. Royal Society Open Science, 6,

[64]

ZhangY, WeiC, HeZ, YuW. Geogpt: An assistant for understanding and processing geospatial tasks. International Journal of Applied Earth Observation and Geoinformation, 2024, 131. 103976

Funding

National Natural Science Foundation of China(42171449)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

285

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/