Open science 2.0: revolutionizing spatiotemporal data sharing and collaboration

Siqin Wang , Xiao Huang , Mengxi Zhang , Shuming Bao , Lingbo Liu , Xiaokang Fu , Ting Zhang , Yongze Song , Peter Kedron , John Wilson , Xinyue Ye , Chaowei Yang , Wendy Guan

Computational Urban Science ›› 2025, Vol. 5 ›› Issue (1) : 4

PDF
Computational Urban Science ›› 2025, Vol. 5 ›› Issue (1) : 4 DOI: 10.1007/s43762-025-00165-1
Opinion Paper

Open science 2.0: revolutionizing spatiotemporal data sharing and collaboration

Author information +
History +
PDF

Abstract

The Spatial Data Lab (SDL) project is a collaborative initiative by the Center for Geographic Analysis at Harvard University, KNIME, Future Data Lab, China Data Institute, and George Mason University. Co-sponsored by the NSF IUCRC Spatiotemporal Innovation Center, SDL aims to advance applied research in spatiotemporal studies across various domains such as business, environment, health, mobility, and more. The project focuses on developing an open-source infrastructure for data linkage, analysis, and collaboration. Key objectives include building spatiotemporal data services, a reproducible, replicable, and expandable (RRE) platform, and workflow-driven data analysis tools to support research case studies. Additionally, SDL promotes spatiotemporal data science training, cross-party collaboration, and the creation of geospatial tools that foster inclusivity, transparency, and ethical practices. Guided by an academic advisory committee of world-renowned scholars, the project is laying the foundation for a more open, effective, and robust scientific enterprise.

Cite this article

Download citation ▾
Siqin Wang, Xiao Huang, Mengxi Zhang, Shuming Bao, Lingbo Liu, Xiaokang Fu, Ting Zhang, Yongze Song, Peter Kedron, John Wilson, Xinyue Ye, Chaowei Yang, Wendy Guan. Open science 2.0: revolutionizing spatiotemporal data sharing and collaboration. Computational Urban Science, 2025, 5(1): 4 DOI:10.1007/s43762-025-00165-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barrick A, Métais I, Ettajani HP, Marion JM, Châtel A. Establishing FAIR (Findable, Accessible, Interoperable and Reusable) principles for estuarine organisms exposed to engineered nanomaterials International Journal of Data Science and Analytics, 2023, 16(4): 407-419.

[2]

Castronova AM, Goodall JL, Elag MM. Models as web services using the open geospatial consortium (ogc) web processing service (wps) standard Environmental Modelling & Software, 2013, 41: 72-83.

[3]

Heidt A. A publishing platform that places code front and centre Nature, 2024.

[4]

Huang, X., Wang, S., Lu, T., Liu, Y., & Serrano-Estrada, L. (2024a). Crowdsourced geospatial data is reshaping urban sciences. International Journal of Applied Earth Observation and Geoinformation; 103687. https://doi.org/10.1016/j.jag.2024.103687.

[5]

Huang X, Wang S, Yang D, Hu T, Chen M, Zhang M, Zhang G, Biljecki F, Lu T, Zou L, Wu Y, Park Y, Li X, Liu Y, Fan H, Mitchell J, Li Z, Hohl A. Crowdsourcing Geospatial Data for Earth and Human Observations: A Review Journal of Remote Sensing, 2024, 4: 0105.

[6]

Huang X, Wang S, Zhang M, Hu T, Hohl A, She B, Li Z. Social media mining under the COVID-19 context: Progress, challenges, and opportunities International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102967.

[7]

Jetlund K, Onstein E, Huang L. IFC schemas in ISO/TC 211 compliant UML for improved interoperability between BIM and GIS ISPRS International Journal of Geo-Information, 2020, 9(4): 278.

[8]

Leible S, Schlager S, Schubotz M, Gipp B. A review on blockchain technology and blockchain projects fostering open science Frontiers in Blockchain, 2019, 2: 486595.

[9]

Li W, Hsu CY, Wang S, Kedron P. GeoAI Reproducibility and Replicability: a computational and spatial perspective Annals of the American Association of Geographers, 2024, 114(9): 2085-2103.

[10]

Liu, L., Fu, X., Kötter, T., Sturm, K., Haubold, C., Guan, W. W., Bao, S., & Wang, F. (2024a). Geospatial Analytics Extension for KNIME. SoftwareX, 25, 101627. ARTN 103948. https://doi.org/10.1016/j.jag.2024.103948.

[11]

Liu L, Wang F Computational methods and GIS applications in social science-lab manual, 2023 CRC Press.

[12]

Liu L, Wang F, Fu X, Kötter T, Sturm K, Guan WW, Bao S. Elevating the RRE Framework for Geospatial Analysis with Visual Programming Platforms: An Exploration with Geospatial Analytics Extension for KNIME International Journal of Applied Earth Observation and Geoinformation, 2024, 130: 103948.

[13]

Tennant, J. P., Waldner, F., Jacques, D. C., Masuzzo, P., Collister, L. B., & Hartgerink, C. H. (2016). The academic, economic and societal impacts of Open Access: an evidence-based review. F1000Res, 5, 632. https://doi.org/10.12688/f1000research.8460.3.

[14]

Wang F, Liu L Computational methods and GIS applications in social science, 2023 CRC Press.

[15]

Wang S, Hu T, Xiao H, Li Y, Zhang C, Ning H, Ye X. GPT, large language models (LLMs) and generative artificial intelligence (GAI) models in geospatial science: a systematic review International Journal of Digital Earth, 2024, 17(1): 2353122.

[16]

Wang S, Huang X, Liu P, Zhang M, Biljecki F, Hu T, Bao S. Mapping the landscape and roadmap of geospatial artificial intelligence (GeoAI) in quantitative human geography: An extensive systematic review International Journal of Applied Earth Observation and Geoinformation, 2024, 128: 103734.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

281

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/