This study investigated the potential role of ERK1/2-cyclinE1 signaling pathway in rat pulmonary artery smooth muscle cells (rPASMCs) proliferation and pulmonary vascular remodeling induced by cigarette smoke exposure. A total of 24 male Wistar rats were randomly divided into 4 groups: control group (C group), S-1M, S-3M and S-6M groups (animals in the groups were exposed to smoke for 1, 3, and 6 months, respectively). HE staining and anti-α-smooth muscle actin antibody staining were performed to observe the degree of pulmonary vascular remodeling. Immunohistochemistry and Western blotting were performed to evaluate ERK1/2 and cyclinE1 expression in pulmonary vessels. Primary cultured rat pulmonary artery smooth muscle cells (rPASMCs) were exposed to cigarette smoke extract (CSE). ERK inhibitor (PD98059) and cyclinE1 siRNA were used to verify the role of ERK1/2 and cyclinE1 in CSE-induced rPASMCs proliferation. Cell proliferation was assessed by cell counting and 5-bromo-2-deoxyuridine (BrdU) incorporation. Our results showed that abnormal pulmonary vascular remodeling was found in cigarette smoked rats. Compared to C group, activated ERK1/2 and cyclinE1 expression was significantly increased in smoke-exposure groups. This up-regulated expression was positively correlated with the severity of pulmonary vascular remodeling, and there was positive correlation between the expression of ERK1/2 and cyclinE1. PD98059 and cyclinE1 siRNA inhibited the proliferation of rPASMCs. The expression of cyclinE1 could be down-regulated by PD98059. Our data demonstrated that increased expression of ERK1/2 and cyclinE1 might be involved in the pathogenesis of abnormal rPASMCs proliferation and rat pulmonary vascular remodelling induced by cigarette smoke exposure.
This study aimed to investigate the association between surfactant protein B (SP-B) polymorphisms and bronchopulmonary dysplasia (BPD) in Chinese Han infants. We performed a casecontrol study including 86 infants with BPD and 156 matched controls. Genotyping was performed by sequence specific primer-polymerase chain reaction (PCR) and haplotypes were reconstructed by the fastPHASE software. The results showed that significant differences were detected in the genotype distribution of C/A-18 and intron 4 polymorphisms of SP-B gene between cases and controls. No significant differences were detected in the genotype distribution of C/T1580 or A/G9306 between the two groups. Haplotype analysis revealed that the frequency of A-del-C-A haplotype was higher in case group (0.12 to 0.05, P=0.003), whereas the frequency of C-inv-C-A haplotype was higher in control group (0.19 to 0.05, P=0.000). In addition, a significant difference was observed in the frequency of C-inv-T-A haplotype between the two groups. It was concluded that the polymorphisms of SP-B intron 4 and C/A-18 could be associated with BPD in Chinese Han infants, and the del allele of intron 4 and A allele of C/A-18 might be used as markers of susceptibility in the disease. Haplotype analysis indicated that the gene-gene interactions would play an important part in determining susceptibility to BPD.
Patients with FLT3-ITDmut/NPM1− cytogenetically normal acute myeloid leukemia (CN-AML), as high-risk molecular group in CN-AML, are associated with a worse prognosis than other CN-AML patients. It is beneficial to generate xenotransplantation model of FLT3-ITDmut/NPM1− CN-AML to better understand the pathogenesis and therapeutic strategies of such AML subtype. The purpose of present study was to establish the xenotransplantation model in NOD/SCID mice with FLT3-ITDmut/NPM1− CN-AML primary cells. The FLT3-ITDmut/NPM1− CN-AML primary cells from 3 of 7 cases were successfully transplanted into NOD/SCID mice, and human CD45 positive cells were detected in the peripheral blood, spleen and bone marrow of mice by using flow cytometry. Infiltration of human leukemia cells in various organs of mice was observed by using immunohistochemistry. Gene analysis confirmed sustained FLT3/ITD mutation without NPM1 mutation in mice. By performing serial transplantation, it was found that characteristics of the leukemia cells in secondary and tertiary generation models remained unchanged. Moreover, in vivo cytarabine administration could extend survival of NOD/SCID mice, which was consistent with clinical observation. In conclusion, we successfully established xenotransplantation model of human FLT3-ITDmut/NPM1− CN-AML in NOD/SCID mice. The model was able to present primary disease and suitable to evaluate the curative effects of new drugs or therapy strategies.
In order to study the effects of exogenous sonic hedgehog (shh) peptide on proliferation, adhesion, migration of endothelial progenitor cells (EPCs) from rat peripheral blood, the mononuclear cells were collected from rat peripheral blood by Ficoll density gradient centrifugation. EPCs were isolated with adherence screening method and cultured in M199 culture medium with the supplement of VEGF and bFGF. The immunohistochemical staining was used to identify cell markers such as CDl33 and VEGFR-2. EPCs were stimulated with exogenous shh peptide of different final concentrations (0.01, 0.1, 1, 10 μg/mL). The proliferation, adhesion and migration of EPCs were detected by MTT chromometry, adhesion test and transwell system, respectively. The results of this study showed that, after 7 days of culture, cells formed clusters, assuming typical cobbles-tone pattern under microscope. After 2 weeks of culture, cells were arranged in cord-like fashion and sometimes grew like “micro-vessels”. Immunohistochemical staining showed that the cultured cells were positive for both CD133 and VEGFR-2. The proliferation, adhesion and migration of EPCs could be promoted by endogenous shh peptide at concentrations from 0.1 μg/mL to 10 μg/mL in a concentration-dependent manner. The findings indicate that exogenous shh peptide can enhance EPCs proliferation, adhesion, and migration, which may have a potential value for clinical application.
Previous studies have shown that STAT3 plays a vital role in the genesis and progression of cancer. In this study, we investigated the relationship between the JAK2/STAT3 signalling pathway and germacrone-induced apoptosis in HepG2 cells. HepG2 cells were incubated with germacrone for 24 h, the protein expression of p-STAT3, STAT3, p-JAK2 and JAK2 was detected by Western Blotting, and RT-PCR was used to determine the expression of STAT3, p53, Bcl-2 and Bax at transcriptional levels. Besides that, HepG2 cells were pre-treated with AG490 or IL-6 for 2 h, and then incubated with germacrone for 24 h. The expression of p-JAK2, JAK2, p-STAT3, STAT3, p53, Bax and Bcl-2 was detected by Western blotting. The activity of HepG2 cells was tested by MTT assay. The apoptosis of HepG2 cells and levels of reactive oxygen species (ROS) were flow cytometrically measured. The results showed that germacrone exposure decreased p-STAT3 and p-JAK2 and regulated expression of p53 and Bcl-2 family members at the same time. Moreover, IL-6 enhanced the activation of the JAK2/STAT3 signalling pathway and therefore attenuated the germacrone-induced apoptosis. Suppression of JAK2/STAT3 signalling pathway by AG490, an inhibitor of JAK2, resulted in apoptosis and an increase in ROS in response to germacrone exposure. We therefore conclude that germacrone induces apoptosis through the JAK2/STAT3 signalling pathway.
To determine whether the microRNAs (miRNAs) contained in cancer-derived microvesicles (MVs) mirror those of the parental tumor cells, we compared the miRNA expression profiles of MVs derived from their parental hepatocellular carcinoma (HCC) cells. The presence and levels of 888 miRNAs from SMMC-7721 cells and MVs were detected by Agilent miRNA microarray analysis. Four selected miRNAs were verified by real time qRT-PCR. Furthermore, the genes of the miRNAs were bioinformatically identified to explore potential roles of the miRNAs in HCC microenvironment. Our results showed that miRNAs expression profiles of MVs derived from HCC were significantly changed. Of all the miRNAs tested, 148 miRNAs were co-expressed in MVs and SMMC-7721 cells, only 121 and 15 miRNAs were detected in MVs and SMMC-7721 cells, respectively. Among the 148 co-expressing miRNAs, 48 miRNAs had the similar expression level and 6 of them were supposed to be oncogenic or suppressive miRNAs. According to the target prediction by Quantile Algorithm method, these miRNAs may regulate 3831 genes which were closely related to cell cycle, apoptosis and oncogenesis, and 78 were known tumor suppressors or oncogenes. Gene ontology (GO) analysis indicated that 3831 genes were mainly associated with nucleic acid binding, cell death, cell adhesion. MVs containing miRNAs, released into the HCC microenvironment, bear the characteristic miRNAs of the original cells and might participate in cancer progression.
The possible association between Helicobacter pylori (H. pylori) infection and chronic idiopathic neutropenia (CIN) was investigated. A total of 78 subjects with CIN were recruited in this case-control study. As a control group, 40 subjects without CIN were selected for comparison with the case group. All participants were evaluated for the prevalence of H. pylori infection by 14C-urea breath test. The corrected splenic index (CSI) was calculated, and serum IL-6, IL-8, IL-10 and HsCRP levels were measured. The differences in CSI, serum IL-6, IL-8, IL-10 and HsCRP levels were compared between CIN patients and controls, as well as between subjects with and without H. pylori infection. The positive rate of H. pylori was 87.18% in CIN group and 52.50% in control group, showing a significant difference (Fisher’s exact, P=0.000). CSI values, and serum IL-6 and HsCRP levels in H. pylori positive-CIN patients were significantly higher than those in negative subjects (Mann-whitney U-test, P=0.016, P=0.001 and P=0.000 respectively), while IL-10 level declined significantly in H. pylori negative-CIN patients (Mann-whitney U-test, P=0.000). In control group, serum IL-6 and HsCRP levels in H. pylori positive individuals were also increased significantly (Mann-whitney U-test, P=0.000), while IL-10 level declined (Mann-whitney U-test, P=0.018). Multivariate regression analysis revealed that H. pylori infection and IL-10 were significant risk factors for CIN with odds ratio (OR): 3.09, 95.0% CI: 1.22–6.93; P=0.019, and OR: 0.17, 95.0% CI: 0.05–0.94; P=0.021, respectively. This prospective study confirmed the existence of an association between H. pylori infection and CIN, suggesting the screening for H. pylori infection and eradicating bacterium in positive cases seem appropriate and beneficial for those patients with CIN diagnosis.
This study preliminarily investigated the mechanism by which chloroquine (CQ) relieves acute lung injury (ALI) complicated in acute hemorrhagic necrotizing pancreatitis (AHNP). Sixty male Wistar rats were randomized into sham-operated group (group A, n=10), AHNP group (group B, n=10), L-arginine-treated group (group C, n=10), L-N-nitro-L-arginine methyl ester (NAME)-treated group (group D, n=10), CQ-treated group (group E, n=10) and CQ+L-NAME-treated group (group F, n=10). TLR4 expression was measured by using real time-PCR and Western blotting respectively. The results showed that, in the group B, the expression of TLR4 and the levels of TNF-α and IL-6 in the lungs were significantly increased, and the nitric oxide (NO) concentration was reduced, as compared with those in the group A (P<0.05 or P<0.01). Lung injury was aggravated with the increased expression of TLR4. When the inhibitor and stimulator of TLR4, namely L-Arg and L-NAME, were added respectively, lung injury was correspondingly relieved or aggravated (P<0.05 or P<0.01). In the group E, TLR4 expression was substantially lower and NO concentration higher than those in the group B (P<0.05 or P<0.01). However, in the group F, NO concentration was markedly decreased, and the inhibitory effect of CQ on TLR4 expression and the relief of lung injury were weakened when compared with those in the group E (P<0.05 or P<0.01). It was concluded that TLR4 may play an important role in the pathogenesis and development of ALI complicated in AHNP. CQ could relieve ALI by decreasing the TLR4 expression and increasing the NO release.
Thirty-eight pregnant inpatients with acute pancreatitis (AP) were retrospectively reviewed from 2006 to 2012 in our hospital. The incidence of pregnancy-associated AP was 2.27‰. Most (78.95%) of the attack occurred in the third trimester. The median of APACHE II score was 6 and severe AP accounted for 31.58% (12 cases). Primary diseases were absent in most cases (57.89%). The most common clinical presentations were abdominal pain (89.47%) and vomiting (68.42%). Pleural effusion and ascites were found only in the third trimester. Elevated white blood cell count, amylase and lipase were commonly found in biochemical examinations. Eleven cases required intensive care in ICU and 21 cases received caesarean section. There were 2 maternal deaths and 12 fetal losses including 4 abortions. It is concluded that AP is a rare entity in pregnancy. The incidence of pancreatitis increases with the gestational age. However, the severity is not necessarily related with the pregnancy trimesters. The diagnosis is based on clinical presentations, laboratory tests and imaging examinations. Although the treatment strategy of a pregnant woman with pancreatitis is similar to the general non-pregnant patient with AP, a multidisciplinary team consisting of gastroenterologist, gastrointestinal surgeon, radiologist, obstetrician, and ICU doctor should be set up.
This study investigated the effects of benazepril administered in the morning or evening on the diurnal variation of renin-angiotensin-aldosterone system (RAAS) and clock genes in the kidney. The male Wistar rat models of 5/6 subtotal nephrectomy (STNx) were established. Animals were randomly divided into 4 groups: sham STNx group (control), STNx group, morning benazepril group (MB) and evening benazepril group (EB). Benazepril was intragastrically administered at a dose of 10 mg/kg/day at 07:00 and 19:00 in the MB group and EB group respectively for 12 weeks. All the animals were synchronized to the light:dark cycle of 12:12 for 12 weeks. Systolic blood pressure (SBP), 24-h urinary protein excretion and renal function were measured at 11 weeks. Blood samples and kidneys were collected every 4 h throughout a day to detect the expression pattern of renin activity (RA), angiotensin II (AngII) and aldosterone (Ald) by radioimmunoassay (RIA) and the mRNA expression profile of clock genes (bmal1, dbp and per2) by real-time PCR at 12 weeks. Our results showed that no significant differences were noted in the SBP, 24-h urine protein excretion and renal function between the MB and EB groups. There were no significant differences in average Ald and RA content of a day between the MB group and EB group. The expression peak of bmal1 mRNA was phase-delayed by 4 to 8 h, and the diurnal variation of per2 and dbp mRNA diminished in the MB and EB groups compared with the control and STNx groups. It was concluded when the similar SBP reduction, RAAS inhibition and clock gene profile were achieved with optimal dose of benazepril, morning versus evening dosing of benazepril has the same renoprotection effects.
This study aimed to investigate the therapeutical effects of Rhodiola rosea extract on rats with type 2 diabetic nephropathy (DN). The rat type 2 DN model was established by high fat and high calorie feeding and intravenous injection of streptozocin (STZ). Wistar rats were randomly divided into normal group, control group, low dose Rhodiola rosea group, high dose Rhodiola rosea group and Captopril group. Oral glucose tolerance test (OGTT) was performed to determine the impairment of glucose tolerance in the established animal model. A series of parameters including fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), creatinine clearance rate (Ccr), 24-h urinary albumin (UA), the ratio of kidney mass/body weight (renal index) and glomerular area were examined after 8 weeks. Moreover, the expression of transforming growth factor (TGF)-β1 in renal tissues was detected by using immunohistochemisty. At the end of the eighth week, FBG, TC, TG, Ccr, 24-h urinary albumin, the ratio of kidney mass/body weight and glomerular area were significantly reduced in Rhodiola rosea extract treatment groups as compared with those in control group. TGF-β1 expression in renal tissues of Rhodiola rosea extract treatment groups was also significantly decreased as compared with that of control group. These results indicate that Rhodiola rosea extract may have a protective effect on early nephropathy in diabetic rats, which might be related to the decrease of the renal expression of TGF-β1.
The specimens of ductal carcinoma in situ (DCIS) with early invasion, and specimens collected by core needle biopsy (CNB) tend to contain limited amount of invasive component, so it is imperative to explore a new technique which can assess HER2 gene status accurately for the limited invasive cancer component in these specimens. Dual staining technique of combining immunohistochemistry (IHC) for myoepithelial cells and single or dual probe chromogenic in situ hybridization (CISH) for HER2 gene was performed on routinely processed paraffin sections from 20 cases diagnosed as having DCIS with invasive cancer. Among them, 10 had fluorescence in situ hybridization (FISH)-confirmed amplification of HER2 and 10 had FISH-confirmed non-amplification of HER2. We successfully detected HER2 genetic signals and myoepithelial IHC markers (SMM-HC or CK5/6) simultaneously on a single section in all 20 specimens. Myoepithelial markers and HER2 signals detected by dual staining assay were consistent with those by individual technique performed alone. HER2 gene amplification results determined by dual staining assay were 100% consistent with those of FISH. Dual staining technique which allows simultaneous detection of myoepithelial marker protein and cancerous HER2 gene is feasible, and it has potential to be used in clinical practice for effective determination of HER2 amplification in limited invasive component.
This study aims to find good markers for predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC). Vasculogenic mimicry (VM) and the expression of hypoxia inducible factor-lα (HIF-lα)/E-cad protein in ESCC were investigated by immunostaining. The association between VM, HIF-lα/E-cad and clinicopathologic characteristics and 5-year-survival rate of patients with ESCC was analyzed. A total of 160 ESCC specimens were involved in this study and 28 specimens of normal esophageal mucosa served as controls. VM channels were identified in 78 (48.75%) of the 160 ESCC specimens and none of the normal esophageal mucosa was found to have VM. The rates of high-expression of HIF-lα and E-cad in ESCC were 43.75% and 38.75%, while the rates in control were 17.86% and 71.43%, respectively (P<0.05 for all). VM and the expression levels of HIF-lα and E-cad were significantly related to lymph node metastasis, serosa infiltration, PTNM staging and 5-year-survival rates of patients with ESCC (P<0.05 for all). VM was positively correlated with HIF-lα but negatively with E-cad, and HIF-lα was negatively correlated with E-cad (P<0.001 for all). The 5-year-survival rate of patients with ESCC was 6.41% (5/78) in VM group and 65% (52/82) in non-VM group, 7.14% (5/70) in high HIF-lα expression group and 57.78% (52/90) in low HIF-lα expression group. Oppositely, the 5-year-survival rate in high E-cad expression group was 80.65% (50/62) and that in low E-cad expression group was 7.37% (7/98) (P<0.05 for all). Cox multifactor regression analysis indicated that lymph node metastasis, PTNM stage, VM and expression levels of HIF-lα and E-cad were independent risk factors of patients with ESCC (P<0.05 for all). Combined detection of VM, HIF-lα and E-cad plays an important role in predicting the invasion, metastasis and prognosis of patients with ESCC.
The type I interferon and IFNAR play an important role in hepatitis B virus (HBV) infection and anti-HBV therapy. However, its mechanism of action is still poorly understood. To gain more insights into the role of type I interferon and type I interferon receptor (IFNAR) in HBV infection, we established an HBV persistent replication IFNAR knockout (IFNAR−/−) mouse model and preliminarily applied this model. At first, the progeny of IFNAR−/− mouse was reproduced. Then hydrodynamic injection with pAAV/HBV1.2 plasmid was conducted to establish the persistent HBV replication IFNAR−/− mouse model. At last, we applied this model to evaluate the effect of nucleoside analogues entecavir (ETV) on HBV replication. It was found that there was no difference in the serum HBsAg and HBeAg levels and HBcAg expression in the liver tissue between the ETV treated groups and normal saline (NS) treated group, but the serum HBV DNA levels were significantly suppressed 10, 25, 40 and 55 days after the ETV treatment [P=0.035, P=0.00, P=0.149 and P=0.084, IFNAR knockout (KO) control group vs. C57BL/6 ETV groups, respectively; P=0.081, P=0.001, P=0.243 and P=0.147, IFNAR KO control group vs. IFNAR KO ETV groups, respectively]. Interestingly, there was no difference in serum HBV DNA levels between the ETV treated IFNAR−/− and C57BL/6 mice. This result suggests that HBV suppression during ETV treatments doesn’t depend on type I interferon and IFNAR. Collectively, persistent HBV replication IFNAR−/− mouse model that we established is a useful and convenient tool to detect the function of the type I interferon and IFNAR in HBV infection and anti-HBV treatments.
Preoperative planning of corrective osteotomy with traditional radiography has limitations in regards to determining the ideal osteotomy location and orientation in three-dimensional femoral deformities. Though a successful operation can be planned preoperatively, intraoperative contingencies might adhere to the procedural plan in the performance of operation. To efficiently perform a planned procedure, proposed is a design to implement three-dimensional reconstruction photography, based on computer-tomography (CT) scan. A custom-made guide was designed to navigate the osteotomy as planned, and additionally, a personalized intramedullary nail was used for fixation after osteotomy. Three-dimensional (3D) photography of deformed femur was established based on the CT dataset and transferred into 3D photography processing software for further planning. Osteotomy planes were designed and adjusted at deformity sites to correct the 3D deformities. The methodology of a custom-made osteotomy guide was introduced in femoral corrective osteotomy, for the first time, to navigate the operation as planned. After the virtual osteotomy and reduction of bone segments, the parameters of a custom-made intramedullary nail were measured for manufacturing. Findings Virtual operation in computer shows complete correction of the 3D deformity. The osteotomy guide, obtained by rapid-prototyping techniques, navigates mimicking surgery on rapid-prototyping model of the involved femur as planned. Internal fixation was achieved using the custom-made intramedullary nail. Interpretation three-dimensional visualization introduces an advantage in preoperative planning for corrective osteotomy of 3D femoral deformity, and the custom-made osteotomy guide is crucial to realize such a deliberate plan during the actual procedures. The internal fixator, such as an intramedullary nail, can be modified or personalized for fixation in unique cases.
This paper aimed to study the ability of baicalein to block human cytomegalovirus (HCMV) infection in extravillous cytotrophoblasts (EVT) and its effect on the vasoactive intestinal peptide (VIP) expression in HCMV-infected EVT in vitro. A human trophoblast cell line (HPT-8) was chosen in this study. HCMV with 100 TCID50 was added into culture medium to infect HPT-8 cells, and then HCMV pp65 antigen was assayed by immunofluorescence staining. The infection status was determined by virus titration. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect virus DNA load in the infected cells. The expression of VIP mRNA and protein in the infected cells was measured by qRT-PCR, immunocytochemistry and Western blotting. Concentration of VIP secreted in supernatants was determined by ELISA. Red-stained HCMV pp65 antigens were found in infected HPT-8 cells 48 h after infection. HCMV replicated in large quantity in infected HPT-8 cells 4 days after infection, reaching a peak at day 6 post-infection. After treatment with baicalein, virus DNA load in infected HPT-8 cells was decreased (P<0.05), and the levels of VIP mRNA and protein, and the concentration were raised to the normal (P>0.05). Our study suggested that baicalein exerts a positive effect on the VIP expression in HCMV-infected EVT at maternal-fetal interface.
This study aimed to identify biochemical predictors of adverse perinatal outcomes in intrahepatic cholestasis of pregnancy (ICP). A total of 106 ICP cases were analyzed retrospectively by the combination of receiver operating characteristic curve and binary logistic regression analysis. “Adverse perinatal outcomes” included spontaneous preterm labor, meconium-staining of amniotic fluid, stillbirth and Apgar score ≤7 at 1 or 5 min. Total bile acid (TBA) [AUC=0.658, 95%CI (0.536, 0.781), P=0.031] was a valuable predictor for adverse perinatal outcomes. The critical value of TBA above which adverse perinatal outcomes were observed was 40.15 μmol/L (Youden’s index=0.3). Binary multivariate logistic regression analysis revealed that the risk of adverse perinatal outcomes increased when TBA ≥40.15 μmol/L [OR=3.792, 95%CI (1.226, 11.727), P=0.021]. It is concluded that the risk of adverse perinatal outcomes in ICP increases when maternal TBA ≥40.15 μmol/L.
This study explored the cumulative live birth rate after three ovarian stimulation in vitro fertilization (IVF) cycles for poor ovarian responders according to the Bologna criteria. In this retrospective cohort study, 479 poor ovarian responders according to the Bologna criteria in the first ovarian stimulation IVF cycle between July 2006 and January 2012 in our IVF centre were included. The cumulative live birth rate was calculated by optimistic and pessimistic methods. The cumulative live birth rate after three ovarian stimulation IVF cycles for poor ovarian responders according to the Bologna criteria was 12.7%–20.5%. The three-cycle cumulative live birth rate was 18.5%–24.5%, 13.2%–27.4% and 8.6%–14.9% for poor responders aged ≤35 years, 36–39 years and ≥40 years, respectively. In conclusion, poor responders according to the Bologna criteria can receive an acceptable cumulative live birth rate after three ovarian stimulation IVF cycles, especially poor responders aged <40 years.
We developed a method that allows us to label nociceptive neurons innervating tooth-pulp in rat trigeminal ganglion neurons using a retrograde fluorescence-tracing method, to record ATP-activated current in freshly isolated fluorescence-labeled neurons and to conduct single cell immunohistochemical staining for P2X1 and P2X3 subunits in the same neuron. Three types of ATP-activated current in these neurons (F, I and S) were recorded. The cells exhibiting the type F current mainly showed positive staining for P2X3, but negative staining for P2X1. The results provide direct and convincing evidence at the level of single native nociceptive neurons for correlation of the characteristics of ATP-activated currents with their composition of P2X1 and P2X3 subunits and cell size. The results also suggest that the P2X3, but not P2X1, is the main subunit that mediates the fast ATP-activated current in nociceptive neurons.
Alzheimer’s disease (AD) is an age-related, progressive neurodegenerative disorder that occurs gradually and results in memory, behavior, and personality changes. Abnormal sphingolipid metabolism was reported in AD previously. This study aimed to investigate whether sphK1 could exacerbate the accumulation of amyloid protein (Aβ) and sharpen the learning and memory ability of the animal model of AD using siRNA interference. An adenovirus vector expressing small interfering RNA (siRNA) against the sphK1 gene (sphK1-siRNA) was designed, and the effects of sphK1-siRNA on the APP/PS1 mouse four weeks after treatment with sphK1-siRNA hippocampal injection were examined. SphK1 protein expression was confirmed by using Western blotting and ceramide content coupled with S1P secretion was evaluated by enzyme-linked immunosorbent assay (ELISA). Aβ load was detected by immunohistochemical staining and ELISA. Morris water maze was adopted to test the learning and memory ability of the APP/PS1 mice. A significant difference in the expression of sphK1 protein and mRNA was observed between the siRNA group and the control group. Aβ load in transfected mice was accelerated in vivo, with significant aggravation of the learning and memory ability. The sphK1 gene modulation in the Aβ load and the learning and memory ability in the animal model of AD may be important for the treatment of AD.
This study was carried out to investigate the role of intrinsic neuroprotective mechanisms in the occurrence and development of vascular cognitive impairment (VCI) with the goal of providing a target for the treatment and prevention of VCI. Inpatients with proven cerebral infarction on cranial computed tomography (CT) were recruited as the ischemic cerebrovascular diseases (ICVD) group, and the patients with mixed stroke were excluded. In ICVD group, 12 patients were diagnosed as having VCI and served as VCI group. Inpatients undergoing surgical operation in our hospital were enrolled as control group. Double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) was employed to detect the levels of hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the cerebrospinal fluid of patients with ICVD. Associations between the levels of these factors and the Mini-Mental State Examination (MMSE) score were evaluated. In ICVD and VCI groups, the levels of HIF-1α and NGF in the cerebrospinal fluid were markedly lower than those in control group (P=0.037 and P=0.000; P=0.023 and P=0.005). In ICVD and VCI groups, the MMSE score was negatively related to VEGF level in the cerebrospinal fluid (r=−0.327, P=0.021; r=−0.585, P=0.046). In VCI group, HIF-1α level was correlated with NGF level (r=0.589, P=0.044). HIF-1α and NGF are involved in ischemic and hypoxic cerebral injury. The HIF signaling pathway plays an important role in intrinsic neuroprotection. Upregulation and maintenance of HIF-1α and NGF expression may attenuate VCI. Changes in VEGF levels are related to the occurrence and development of cognitive impairment.
Glycoprotein (GP) Ibα ectodomain shedding has important implications for thrombosis and hemostasis. A disintegrin and metalloproteinase 17 (ADAM17) was identified to play an essential role in agonist induced GPIbα shedding. The relationship of GPIbα shedding and ADAM17 in the acute stage of atherosclerotic ischemic stroke (AIS) patients has not been thoroughly studied. A total of 306 patients and 230 controls matched for age, sex, race, history of hypertension and diabetes mellitus were enrolled in the study. GPIbα, ADAM17, glycocalicin were detected by flow cytometry, Western blotting, and enzyme-linked immunosorbent assay (ELISA) respectively. Compared with the control group, the expression of GPIbα in patients with acute ischemic stroke was significantly lower (P=0.000, P<0.01). Plasma glycocalicin and ADAM17 in AIS group were higher than those in control group (P=0.699, P=0.000). Pearson’s analysis showed glycocalicin bore no correlation with GPIbα in AIS patients (r=0.095, P>0.05). GPIbα and National Institute of Health Stroke Scale (NIHSS) had negative correlation (r=−0.514, P<0.01). Our findings indicate that ADAM17 may be a risk factor for ischemic stroke in Chinese and the expression of GPIbα can serve as a measure for stroke severity.
The feasibility of contrast-enhanced ultrasonography in the assessment of atherosclerotic plaque neovascularization and its relation to histological findings were investigated. Abdominal aortic atherosclerotic plaque model was induced in 25 New Zealand white rabbits by a combination of high cholesterol-rich diet and balloon aortic denudation. Standard and contrast-enhanced ultrasonography was performed at the 16th week of the model induction period. The plaques were classified as echogenic plaques or echolucent plaques according to their echogenicity at standard ultrasonography. The maximum thickness of plaque was measured in the longitudinal section. Time intensity curve was used to quantify the enhanced intensity of the plaque. Animals were euthanized and abdominal aortas were harvested for histological staining of CD31 to evaluate the neovascularization density of atherosclerotic plaque. The results showed that the echolucent plaques had higher enhanced intensity during contrastenhanced ultrasonography and higher neovascularization density at CD31 staining than the echogenic plaques. The enhanced intensity of atherosclerotic plaque and its ratio to lumen were well correlated with histological neovascularization density (r=0.75, P<0.001; r=0.68, P<0.001, respectively). However, the maximum thickness of plaque was not correlated with neovascularization density (r=0.235, P=0.081). These findings demonstrated that the enhanced intensity in the plaque and ratio of enhanced intensity to that in the lumen of abdominal aorta may be more accurate in the evaluation of plaque neovascularization than maximum thickness. Our study indicates that contrast-enhanced ultrasonography provides us a reliable method for the evaluation of plaque neovascularization.
The purpose of this study was to evaluate the value of multi-detector computed tomography (MDCT) angiography for the diagnosis of congenital aortic arch anomalies and present the radiological images of congenital aortic arch anomalies in Chinese children. MDCT angiography and transthoracic echocardiography (TTE) were applied for the diagnosis of congenital aortic arch anomalies in 362 Chinese children between May 2006 and December 2011 (age ranges from 5 days to 12 years; mean age, 3.3 years). Surgery and/or catheter angiography (CA) were conducted in all patients to confirm the final diagnosis. In the 362 Chinese children with congenital heart anomalies, congenital aortic arch anomalies were definitely diagnosed in 198 children and 164 children ruled out by operation and/or (CA). Among the 198 children with anomalies, coarctation of aorta (CoA), interruption of aortic arch (IAA), right aortic arch, aberrant right subclavian artery and double aortic arch were diagnosed in 134, 32, 20, 10 and 2 children respectively, and there were 6 cases with uncommon congenital aortic arch anomalies: 2 had double aortic arch including 1 with five branches of the aortic arch, 2 had isolation of the right subclavian artery with two patent ductus arteriosus (PDA), 1 had an isolation of the common carotid artery with a PDA, and 1 had double PDA with a single ventricle and pulmonary artery atresia. Among the 32 children with IAA, 28 were of type A, and 4 were of type B. The diagnostic sensitivity, specificity and accuracy of MDCT angiography for congenital aortic arch anomalies were 100% (198/198), 98% (161/164) and 99% (359/362), respectively. The diagnostic sensitivity, specificity and accuracy of TTE were 92% (182/198), 81% (133/164) and 87% (315/362), respectively. In conclusion, MDCT angiography is a reliable, noninvasive imaging technique for the diagnosis of congenital aortic arch anomalies in children. Sometimes, even more information can be obtained from this technique than from conventional angiography.
Relationship between ATP changes of rabbit blood and postmortem interval (PMI) was studied. Twenty-four healthy rabbits were sacrificed and randomly divided into 3 groups with 8 rabbits of each group. The bodies of three groups were placed in calorstat at temperature of 15°C, 25°C and 35°C, respectively. The blood from the right ventricle was sampled through indwelling needle each 4 h until 72 h after death. ATP levels in the blood samples were measured by using ATP fluorescence rapid detection technique at different PMIs. Blood ATP levels slightly increased in the early stage after death and then constantly declined at all temperatures (15°C, 25°C, and 35°C). Cubic polynomial regression equations with log[ATP] as dependent variable (y) and PMI as independent variable (x) at different temperatures and the optimal time period were established as followed: Under 15°C and during 16–64 h after death, y=−3.027×10−5x3+0.003x2−0.096x-10.625 (Ra2=0.992, P<0.001); under 25°C and during 8–56 h after death, y=−2.921×10−5x3+0.002x2-0.059x-11.186 (Ra2=0.989, P<0.001); under 35dgC and during 4–36 h after death, y=−9.769×10−5x3+ 0.005x2-0.117x-11.166 (Ra2=0.991, P<0.001). The changes in ATP levels in blood collected from right ventricle of rabbit cadavers showed relatively stable and regular degradation within 72 h after death at different temperatures.