2025-03-22 2007, Volume 27 Issue 34

  • Select all
  • Yunchao Chen , Daozhong Huang , Kaiyan Li , Zhihui Wang , Kai Hong , Fen Wang , Qingping Zang

    To examine the role of ultrasound in gene delivery in vitro, three cells lines were exposed to the low-frequency ultrasound of varying intensities and for different durations to evaluate their effect on gene transfection and cell viability of the cells. Microbubble (MB), Optison (10%), was also used to observe the role of the microbubbles in gene transfection. The results demonstrated that as the ultrasound intensity and the exposure time increased, the gene transfer rate increased and the cell viability decreased, but at high energy intensities, the cell viability decreased dramatically, which caused the transfer rate to decrease. The most efficient ultrasound intensity for inducing gene transfer was 1 W/cm2 with duration being 20 s. At the same energy intensity, higher ultrasound intensity could achieve maximal gene transfer rate earlier. Microbubbles could increase ultrasound-induced cell gene transfer rate by about 2 to 3 times mainly at lower energy intensities. Moreover, microbubbles could raise the maximum gene transfer rate mediated by ultrasound. It is concluded that the low-frequency ultrasound can induce cell gene transfer and the cell gene transfer rate and viability are correlated with not only the ultrasound energy intensity but also the ultrasound intensity, the higher ultrasound intensity achieves its maximal transfer rate more quickly and the ultrasound intensity that can induce optimal gene transfer is 1 W/cm2 with duration being 20 s, and microbubbles can significantly increase the maximal gene transfer rate in vitro.

  • Changzheng Huang , Nengxing Lin , Yating Tu , Xin Lian , Jian Kang , Li Zhu

    A site-directed mutant DNA fragment was synthesized and transfected into clinical Neisseria Gonorrhoeae (NG) stains to construct the transformants that contained the corresponding mutagenesis of regulation region of mtrR gene. According to the technique of gene splicing by overlap extension (SOEing), a DNA segment with specific mutagenesis was constructed by two-step polymerase chain reaction (PCR). The mutation fragments EF could be used for the next experiment in which the mutation NG strains were induced. By comparing the recombinant EF fragments to the corresponding DNA fragments of clinical NG strains, 2 of these were not compatible completely. The results of sequencing revealed that there was a 9 bp deletion between the 45 to 54 inverted repeat sequence localized within the mtrR promoter. It can be confirmed that the fragments EF are the specifically designed mutant fragments.

  • Ping Li , Jing Mao , Zhou Peng , Hui Xie

    In order to study mechanical stress on root from orthodontic tooth movement by sliding mechanics, a 3-dimensional finite element model incorporating all layers of a human mandibular dental arch with orthodontic appliance has been developed to simulate mechanical stress on root from the orthodontic tooth movement. Simulated orthodontic force of 2 N at 0, 30 and 45 degree from the horizontal axis was applied to the crown of the teeth. The finite element analysis showed when orthodontic forces were applied to the tooth, the stress was mainly concentrated at the neck of the tooth decreasing uniformly to the apex and crown. The highest stress on the root was 0.621 N/mm2 for cervical margin of the canine, and 0.114 N/mm2 for apical region of the canine. The top of canine crown showed the largest amount of displacement (2.417 μm), while the lowest amount of displacement was located at the apical region of canine (0.043 μm). In conclusion, this model might enable one to simulate orthodontic tooth movements clinically. Sliding force at 2 N is ideal to ensure the bodily orthodontic tooth movement. The highest stress concentration in the roots was always localized at the cervical margin when orthodontic force of 2 N at 0, 30 and 45 degree from the horizontal axis, so there may be the same risk of root resorption when orthodontic force of 2 N at 0, 30 and 45 degree was used in clinic cases.