Development of mRNA Cancer Vaccines: Delivery Strategies and Immunogenicity Optimization

Awais Ali

Current Medical Science ›› 2025, Vol. 45 ›› Issue (6) : 1275 -1287.

PDF
Current Medical Science ›› 2025, Vol. 45 ›› Issue (6) :1275 -1287. DOI: 10.1007/s11596-025-00127-y
Review
review-article

Development of mRNA Cancer Vaccines: Delivery Strategies and Immunogenicity Optimization

Author information +
History +
PDF

Abstract

mRNA vaccines have emerged as a transformative platform in oncology, offering significant advantages in rapid development, flexibility, and safety over traditional modalities. However, their clinical translation faces challenges such as mRNA instability, inefficient in vivo delivery, and the immunosuppressive tumor microenvironment (TME). This review comprehensively outlines recent advancements in overcoming these hurdles. We discuss the molecular design of mRNA vaccines, including non-replicating and self-amplifying RNAs, and highlight breakthroughs in delivery strategies, particularly lipid nanoparticles (LNPs), that enhance stability and immunogenicity. Furthermore, we explore various administration routes and their impact on eliciting robust antitumor immunity. The review also covers the classification of antigens—viral, tumor-associated, and neoantigens—and the innovative use of mRNA to encode immunomodulators to reprogram the TME. Finally, we address key considerations for clinical translation, including manufacturing, stability, safety, and combination strategies with immunotherapies. By synthesizing these developments, this review underscores the potential of mRNA vaccines to realize personalized cancer immunotherapy and outlines future directions for the field.

Keywords

mRNA vaccine / Lipid nanoparticles / Neoantigen / Cancer immunotherapy / Drug delivery / Tumor microenvironment / Personalized cancer vaccine / Clinical trials

Cite this article

Download citation ▾
Awais Ali. Development of mRNA Cancer Vaccines: Delivery Strategies and Immunogenicity Optimization. Current Medical Science, 2025, 45(6): 1275-1287 DOI:10.1007/s11596-025-00127-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018;359(6382):1355–1360.

[2]

Fiedler K, Lazzaro S, Lutz J, et al. mRNA cancer vaccines. Current Strategies in Cancer Gene Therapy. Cham: Springer International Publishing, 2016:61–85.

[3]

Weissman D, Karikó K. mRNA: fulfilling the promise of gene therapy. Mol Ther. 2015;23(9):1416–1417.

[4]

Lin MJ, Svensson-Arvelund J, Lubitz GS, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3(8):911–926.

[5]

Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20(1):41.

[6]

Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol. 2020;65:14–20.

[7]

Anderson EJ, Rouphael NG, Widge AT, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383(25):2427–2438.

[8]

Garcia-Beltran WF, St Denis KJ, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell. 2022;185(3):457–466.e4.

[9]

Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383(27):2603–2615.

[10]

Thomas SJ, Moreira ED Jr, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine through 6 months. N Engl J Med. 2021;385(19):1761–1773.

[11]

Eygeris Y, Gupta M, Kim J, et al. Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res. 2022;55(1):2–12.

[12]

Kutzler MA, Weiner DB. DNA vaccines: ready for prime time Nat Rev Genet. 2008;9(10):776–788.

[13]

Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279.

[14]

Deng Z, Tian Y, Song J, et al. mRNA vaccines: the dawn of a new era of cancer immunotherapy. Front Immunol. 2022;13:887125.

[15]

Gergen J, Petsch B. mRNA-based vaccines and mode of action. Curr Top Microbiol Immunol. 2022;440:1–30.

[16]

Krähling V, Erbar S, Kupke A, et al. Self-amplifying RNA vaccine protects mice against lethal Ebola virus infection. Mol Ther. 2023;31(2):374–386.

[17]

Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28(3–4):117–129.

[18]

Lundstrom K. Self-replicating RNA viruses for RNA therapeutics. Molecules. 2018;23(12):3310.

[19]

Beissert T, Perkovic M, Vogel A, et al. A trans-amplifying RNA vaccine strategy for induction of potent protective immunity. Mol Ther. 2020;28(1):119–128.

[20]

George J, Raju R. Alphavirus RNA genome repair and evolution: molecular characterization of infectious sindbis virus isolates lacking a known conserved motif at the 3' end of the genome. J Virol. 2000;74(20):9776–9785.

[21]

Papukashvili D, Rcheulishvili N, Liu C, et al. Self-amplifying RNA approach for protein replacement therapy. Int J Mol Sci. 2022;23(21):12884.

[22]

Reichmuth AM, Oberli MA, Jaklenec A, et al. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7(5):319–334.

[23]

Zhu F, Tan C, Li C, et al. Design of a multi-epitope vaccine against six Nocardia species based on reverse vaccinology combined with immunoinformatics. Front Immunol. 2023;14:1100188.

[24]

Kashem SW, Haniffa M, Kaplan DH. Antigen-presenting cells in the skin. Annu Rev Immunol. 2017;35:469–499.

[25]

Melo M, Porter E, Zhang Y, et al. Immunogenicity of RNA replicons encoding HIV env immunogens designed for self-assembly into nanoparticles. Mol Ther. 2019;27(12):2080–2090.

[26]

Engmann L, Shaker A, White E, et al. Local side effects of subcutaneous and intramuscular urinary gonadotropins for ovarian stimulation in in vitro fertilization: a prospective, randomized study. Fertil Steril. 1998;69(5):836–840.

[27]

Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–18.

[28]

Zeng C, Zhang C, Walker PG, et al. Formulation and delivery technologies for mRNA vaccines. mRNA Vaccines. Cham: Springer International Publishing, 2020:71–110.

[29]

Liang F, Lindgren G, Lin A, et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol Ther. 2017;25(12):2635–2647.

[30]

Moyer TJ, Zmolek AC, Irvine DJ. Beyond antigens and adjuvants: formulating future vaccines. J Clin Invest. 2016;126(3):799–808.

[31]

Johansen P, Kündig TM. Intralymphatic immunotherapy and vaccination in mice. J Vis Exp. 2014(84):e51031.

[32]

Yuan Y, Gao F, Chang Y, et al. Advances of mRNA vaccine in tumor: a maze of opportunities and challenges. Biomark Res. 2023;11(1):6.

[33]

Ji P, Sun W, Zhang S, et al. Modular hydrogel vaccine for programmable and coordinate elicitation of cancer immunotherapy. Adv Sci (Weinh). 2023;10(22):e2301789.

[34]

van Lint S, Goyvaerts C, Maenhout S, et al. Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res. 2012;72(7):1661–1671.

[35]

Shim K, Jo H, Jeoung D. Cancer/testis antigens as targets for RNA-based anticancer therapy. Int J Mol Sci. 2023;24(19):14679.

[36]

Le Moignic A, Malard V, Benvegnu T, et al. Preclinical evaluation of mRNA trimannosylated lipopolyplexes as therapeutic cancer vaccines targeting dendritic cells. J Control Release. 2018;278:110–121.

[37]

Chen W, Zhu Y, He J, et al. Path towards mRNA delivery for cancer immunotherapy from bench to bedside. Theranostics. 2024;14(1):96–115.

[38]

Haabeth OAW, Blake TR, McKinlay CJ, et al. mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice. Proc Natl Acad Sci U S A. 2018;115(39): E9153-E9161.

[39]

Li Z, Amaya L, Pi R, et al. Charge-altering releasable transporters enhance mRNA delivery in vitro and exhibit in vivo tropism. Nat Commun. 2023;14(1):6983.

[40]

Hewitt SL, Bai A, Bailey D, et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci Transl Med. 2019;11(477):eaat9143.

[41]

Cirella A, Bolaños E, Di Trani CA, et al. Intratumoral gene transfer of mRNAs encoding IL12 in combination with decoy-resistant IL18 improves local and systemic antitumor immunity. Cancer Immunol Res. 2023;11:184–198.

[42]

Lewis LM, Badkar AV, Cirelli D, et al. The race to develop the pfizer-BioNTech COVID-19 vaccine: from the pharmaceutical scientists' perspective. J Pharm Sci. 2023;112(3):640–647.

[43]

Patel P, MacDonald JC, Boobalan J, et al. Regulatory agilities impacting review timelines for Pfizer/BioNTech’s BNT162b2 mRNA COVID-19 vaccine: a retrospective study. Front Med. 2023;10:1275817.

[44]

Li WH, Su JY, Li YM. Rational design of T-cell- and B-cell-based therapeutic cancer vaccines. Acc Chem Res. 2022;55(18):2660–2671.

[45]

Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4:7.

[46]

Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021;18(4):215–229.

[47]

Guo C, Manjili MH, Subjeck JR, et al. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res. 2013;119:421–475.

[48]

Melief CJM, van Hall T, Arens R, et al. Therapeutic cancer vaccines. J Clin Investig. 2015;125(9):3401–3412.

[49]

Kwak M, Leick KM, Melssen MM, et al. Vaccine strategy in melanoma. Surg Oncol Clin N Am. 2019;28(3):337–351.

[50]

Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012;30(12):1210–1216.

[51]

To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov. 2021;16(11):1307–1317.

[52]

Baiersdörfer M, Boros G, Muramatsu H, et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids. 2019;15:26–35.

[53]

Mauger DM, Cabral BJ, Presnyak V, et al. mRNA structure regulates protein expression through changes in functional half-life. Proc Natl Acad Sci U S A. 2019;116(48):24075–24083.

[54]

Kwon H, Kim M, Seo Y, et al. Emergence of synthetic mRNA: in vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials. 2018;156:172–193.

[55]

Furuichi Y. Discovery of m7G-cap in eukaryotic mRNAs. Proceedings Japan Academy Ser B: Physical And Biological Sciences. 2015;91(8):394–409.

[56]

Nicholson AL, Pasquinelli AE. Tales of detailed poly(A) tails. Trends Cell Biol. 2019;29(3):191–200.

[57]

Minnaert AK, Vanluchene H, Verbeke R, et al. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Adv Drug Deliv Rev. 2021;176:113900.

[58]

Tsui NB, Ng EK, Dennis Lo YM. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem. 2002;48(10):1647–1653.

[59]

Karikó K, Muramatsu H, Ludwig J, et al. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39(21):e142.

[60]

Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567–571.

[61]

Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949):1465–1468.

[62]

Boczkowski D, Nair SK, Snyder D, et al. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med. 1996;184(2):465–472.

[63]

Ali A, Alamri A, Hajar A. NK/DC crosstalk-modulating antitumor activity via Sema3E/PlexinD1 axis for enhanced cancer immunotherapy. Immunol Res. 2024;72(6):1217–1228.

[64]

Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–745.

[65]

Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–1529.

[66]

Diebold SS, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–1531.

[67]

Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-κB by toll-like receptor 3. Nature. 2001;413(6857):732–738.

[68]

Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–1840.

[69]

Karikó K, Buckstein M, Ni H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–175.

[70]

Martin D, Gutkind JS. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene. 2008;27(Suppl 2):S31–S42.

[71]

Pietropaolo V, Prezioso C, Moens U. Role of virus-induced host cell epigenetic changes in cancer. Int J Mol Sci. 2021;22(15):8346.

[72]

Saha A, Kaul R, Murakami M, et al. Tumor viruses and cancer biology: Modulating signaling pathways for therapeutic intervention. Cancer Biol Ther. 2010;10(10):961–978.

[73]

Cheng L, Wang Y, Du J. Human papillomavirus vaccines: an updated review. Vaccines. 2020;8(3):391.

[74]

Pattyn J, Hendrickx G, Vorsters A, et al. Hepatitis B vaccines. J Infect Dis. 2021;224(Supplement_4):S343–S351.

[75]

Zhai L, Tumban E. Gardasil-9: a global survey of projected efficacy. Antiviral Res. 2016;130:101–109.

[76]

Lee S, Yoon H, Hong SH, et al. mRNA-HPV vaccine encoding E6 and E7 improves therapeutic potential for HPV-mediated cancers via subcutaneous immunization. J Med Virol. 2023;95(12):e29309.

[77]

Barouch DH, Whitney JB, Moldt B, et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature. 2013;503(7475):224–228.

[78]

Zhang P, Narayanan E, Liu Q, et al. A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat Med. 2021;27(12):2234–2245.

[79]

Yates NL, Liao HX, Fong Y, et al. Vaccine-induced env V1-V2 IgG3 correlates with lower HIV-1 infection risk and declines soon after vaccination. Sci Transl Med. 2014;6(228): 228ra39.

[80]

Bournazos S, Klein F, Pietzsch J, et al. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell. 2014;158(6):1243–1253.

[81]

Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16(12):789–802.

[82]

Guo M, Duan X, Peng X, et al. A lipid-based LMP2-mRNA vaccine to treat nasopharyngeal carcinoma. Nano Res. 2023;16(4):5357–5367.

[83]

van Zyl DG, Mautner J, Delecluse HJ. Progress in EBV vaccines. Front Oncol. 2019;9:104.

[84]

Kenter GG, Welters MJP, Valentijn ARPM, et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 2009;361(19):1838–1847.

[85]

Shi Y, Zheng M. Hepatitis B virus persistence and reactivation. BMJ. 2020;370:m2200.

[86]

Zajac AJ, Blattman JN, Murali-Krishna K, et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188(12):2205–2213.

[87]

Buonaguro L, Tagliamonte M. Selecting target antigens for cancer vaccine development. Vaccines. 2020;8(4):615.

[88]

van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–1647.

[89]

Ménard S, Pupa SM, Campiglio M, et al. Biologic and therapeutic role of HER2 in cancer. Oncogene. 2003;22(42):6570–6578.

[90]

Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes for targeted therapy of human tumors. Cancer Lett. 1997;118(2):153–160.

[91]

Gold P, Freedman SO. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med. 1965;121(3):439–462.

[92]

Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem. 1990;265(25):15286–15293.

[93]

Wang MC, Valenzuela LA, Murphy GP, et al. Purification of a human prostate specific antigen. J Urol. 2017;197(2S):S148–S152.

[94]

Chen YT, Scanlan MJ, Sahin U, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A. 1997;94(5):1914–1918.

[95]

Crandall BF, Lau HL. Alpha-fetoprotein: a review. CRC Crit Rev Clin Lab Sci. 1981;15(2):127–185.

[96]

Nakatsura T, Yoshitake Y, Senju S, et al. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun. 2003;306(1):16–25.

[97]

Ribas A, Butterfield LH, McBride WH, et al. Genetic immunization for the melanoma antigen MART-1/Melan-a using recombinant adenovirus-transduced murine dendritic cells. Cancer Res. 1997;57(14):2865–2869.

[98]

Oji Y, Ogawa H, Tamaki H, et al. Expression of the Wilms' tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res. 1999;90(2):194–204.

[99]

He Q, Gao H, Tan D, et al. mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B. 2022;12(7):2969–2989.

[100]

Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–581.

[101]

Matsushita H, Vesely MD, Koboldt DC, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature. 2012;482(7385):400–404.

[102]

Robbins PF, Lu YC, El-Gamil M, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19(6):747–752.

[103]

Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;585(7823):107–112.

[104]

Guan Y, Li M, Qiu Z, et al. Comprehensive analysis of DOK family genes expression, immune characteristics, and drug sensitivity in human tumors. J Adv Res. 2022;36:73–87.

[105]

Yang S, Corbett SE, Koga Y, et al. Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Genome Biol. 2020;21(1):57.

[106]

Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641–645.

[107]

Tran E, Ahmadzadeh M, Lu YC, et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science. 2015;350(6266):1387–1390.

[108]

Bassani-Sternberg M, Chong C, Guillaume P, et al. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput Biol. 2017;13(8):e1005725.

[109]

Kim S, Kim HS, Kim E, et al. Neopepsee: accurate genome-level prediction of neoantigens by harnessing sequence and amino acid immunogenicity information. Ann Oncol. 2018;29(4):1030–1036.

[110]

Segal NH, Parsons DW, Peggs KS, et al. Epitope landscape in breast and colorectal cancer. Cancer Res. 2008;68(3):889–892.

[111]

Xu H, Zheng X, Zhang S, et al. Tumor antigens and immune subtypes guided mRNA vaccine development for kidney renal clear cell carcinoma. Mol Cancer. 2021;20(1):159.

[112]

Sahin U, Derhovanessian E, Miller M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–226.

[113]

Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother. 2024;20(1):2307187.

[114]

Hsu SK, Jadhao M, Liao WT, et al. Culprits of PDAC resistance to gemcitabine and immune checkpoint inhibitor: Tumour microenvironment components. Front Mol Biosci. 2022;9:1020888.

[115]

Xiao Y, Chen J, Zhou H, et al. Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat Commun. 2022;13(1):758.

[116]

van Lint S, Renmans D, Broos K, et al. Intratumoral delivery of TriMix mRNA results in T-cell activation by cross-presenting dendritic cells. Cancer Immunol Res. 2016;4(2):146–156.

[117]

Barbier AJ, Jiang AY, Zhang P, et al. The clinical progress of mRNA vaccines and immunotherapies. Nat Biotechnol. 2022;40(6):840–854.

[118]

Liu C, Shi Q, Huang X, et al. mRNA-based cancer therapeutics. Nat Rev Cancer. 2023;23(8):526–543.

[119]

Weng Y, Li C, Yang T, et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv. 2020;40:107534.

[120]

Kim J, Eygeris Y, Gupta M, et al. Self-assembled mRNA vaccines. Adv Drug Deliv Rev. 2021;170:83–112.

[121]

Hou X, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–1094.

[122]

Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–780.

[123]

Eyer P, Podhradský D. Evaluation of the micromethod for determination of glutathione using enzymatic cycling and Ellman’s reagent. Anal Biochem. 1986;153(1):57–66.

[124]

Mohammadi Y, Nezafat N, Negahdaripour M, et al. In silico design and evaluation of a novel mRNA vaccine against BK virus: a reverse vaccinology approach. Immunol Res. 2023;71(3):422–441.

[125]

Zhang Y, Hu Y, Tian H, et al. Opportunities and challenges for mRNA delivery nanoplatforms. J Phys Chem Lett. 2022;13(5):1314–1322.

[126]

Kallen KJ, Heidenreich R, Schnee M, et al. A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum Vaccin Immunother. 2013;9(10):2263–2276.

[127]

Rauch S, Lutz J, Kowalczyk A, et al. RNActive® technology: generation and testing of stable and immunogenic mRNA vaccines. Methods Mol Biol. 2017;1499:89–107.

[128]

Zhao P, Hou X, Yan J, et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater. 2020;5(2):358–363.

[129]

Van der Jeught K, De Koker S, Bialkowski L, et al. Dendritic cell targeting mRNA lipopolyplexes combine strong antitumor T-cell immunity with improved inflammatory safety. ACS Nano. 2018;12(10):9815–9829.

[130]

Pardi N, Secreto AJ, Shan X, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630.

[131]

Kowalski PS, Rudra A, Miao L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27(4):710–728.

[132]

Pardi N, Hogan MJ, Naradikian MS, et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med. 2018;215(6):1571–1588.

[133]

Stratton MR. Exploring the genomes of cancer cells: progress and promise. Science. 2011;331(6024):1553–1558.

[134]

Anderson K, Lutz C, van Delft FW, et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature. 2011;469(7330):356–361.

[135]

Lohr JG, Stojanov P, Carter SL, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101.

[136]

Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

[137]

Jones MR, Schrader KA, Shen Y, et al. Response to angiotensin blockade with irbesartan in a patient with metastatic colorectal cancer. Ann Oncol. 2016;27(5):801–806.

[138]

Bedard PL, Hansen AR, Ratain MJ, et al. Tumour heterogeneity in the clinic. Nature. 2013;501(7467):355–364.

[139]

Russo G, Reche P, Pennisi M, et al. The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opin Drug Discov. 2020;15(11):1267–1281.

[140]

Thomas S, Abraham A, Baldwin J, et al. Artificial intelligence in vaccine and drug design. Vaccine Design. New York, NY: Springer US, 2021:131–146.

[141]

McCaffrey P. Artificial intelligence for vaccine design. Vaccine Design. New York, NY: Springer US, 2021:3–13.

[142]

Rupaimoole R, Calin GA, Lopez-Berestein G, et al. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 2016;6(3):235–246.

[143]

Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019;79(18):4557–4566.

[144]

Munn DH, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol. 2016;39:1–6.

[145]

Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5(4):263–274.

[146]

Birtel M, Voss RH, Reinhard K, et al. A TCR-like CAR promotes sensitive antigen recognition and controlled T-cell expansion upon mRNA vaccination. Cancer Res Commun. 2022;2(8):827–841.

[147]

Iinuma H, Fukushima R, Inaba T, et al. Phase I clinical study of multiple epitope peptide vaccine combined with chemoradiation therapy in esophageal cancer patients. J Transl Med. 2014;12(1):84.

[148]

Basler L, Kowalczyk A, Heidenreich R, et al. Abscopal effects of radiotherapy and combined mRNA-based immunotherapy in a syngeneic, OVA-expressing thymoma mouse model. Cancer Immunol Immunother. 2018;67(4):653–662.

[149]

Bhattacharya M, Sharma AR, Ghosh P, et al. Bioengineering of novel non-replicating mRNA (NRM) and self-amplifying mRNA (SAM) vaccine candidates against SARS-CoV-2 using immunoinformatics approach. Mol Biotechnol. 2022;64(5):510–525.

RIGHTS & PERMISSIONS

The Author(s), under exclusive licence to the Huazhong University of Science and Technology

AI Summary AI Mindmap
PDF

6

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/