Multifaceted Roles of Bcl-2 Family Proteins: Regulatory Roles in Apoptosis, Physiological Functions, and Therapeutic Potential

Nisreen Salah Majeed , Asmaa A. Salam , Shahd Rajab Farhan , Sumaya Ayad Abdulrazzaq , Soumya V. Menon , Mandeep Kaur , Mandeep Singh , Beneen Husseen , Mohammed Abed Jawad , Razzagh Abedi-Firouzjah

Current Medical Science ›› 2025, Vol. 45 ›› Issue (6) : 1319 -1335.

PDF
Current Medical Science ›› 2025, Vol. 45 ›› Issue (6) :1319 -1335. DOI: 10.1007/s11596-025-00124-1
Review
review-article

Multifaceted Roles of Bcl-2 Family Proteins: Regulatory Roles in Apoptosis, Physiological Functions, and Therapeutic Potential

Author information +
History +
PDF

Abstract

Bcl-2 family proteins (BFPs) are essential regulators of regulated cell death (RCD), and their dysregulation is implicated in a wide range of disorders, including cancer, neurodegenerative diseases, and autoimmune conditions. Recent studies have shown that BFPs also play critical roles in autophagy, calcium homeostasis, neuronal function, and mitochondrial dynamics, underscoring their multifaceted contributions to cellular health. In this review, we summarize the current knowledge concerning the physiological roles and structural diversity of BFPs, with a particular focus on key multidomain proteins such as Bak, Bax, and Bok. Our findings highlight persistent challenges and knowledge gaps, especially concerning the interactions between BFPs and diverse cellular pathways. In conclusion, BFPs act as fundamental regulators of cell survival and apoptosis. While significant progress has been made in elucidating their molecular mechanisms, important questions remain—particularly regarding the precise structural dynamics of pore formation, the influence of the mitochondrial lipid composition, and the balance between pro- and anti-apoptotic members. Finally, the therapeutic potential of BFP-targeted drugs, including BH3 mimetics, offers promising avenues for treating cancer and other diseases characterized by aberrant regulation of apoptosis.

Keywords

Bcl-2 / Bax / Bak / Apoptosis / Mitochondrial dynamics / BH3 mimetics / Therapeutic target / Cell death regulation

Cite this article

Download citation ▾
Nisreen Salah Majeed, Asmaa A. Salam, Shahd Rajab Farhan, Sumaya Ayad Abdulrazzaq, Soumya V. Menon, Mandeep Kaur, Mandeep Singh, Beneen Husseen, Mohammed Abed Jawad, Razzagh Abedi-Firouzjah. Multifaceted Roles of Bcl-2 Family Proteins: Regulatory Roles in Apoptosis, Physiological Functions, and Therapeutic Potential. Current Medical Science, 2025, 45(6): 1319-1335 DOI:10.1007/s11596-025-00124-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qian S, Wei Z, Yang W, et al.. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol., 2022, 12 985363

[2]

Tayeb F. Dysregulation of BCL-2 family proteins in blood neoplasm: therapeutic relevance of antineoplastic agent venetoclax. Explor Med., 2024, 5(3): 331-350

[3]

Adams CM, Clark-Garvey S, Porcu P, et al.. Targeting the Bcl-2 family in B-cell lymphoma. Front Oncol., 2019, 8: 636

[4]

D’Aguanno S, Del Bufalo D. Inhibition of anti-apoptotic Bcl-2 proteins in preclinical and clinical studies: current overview in cancer. Cells., 2020, 9(5): 1287

[5]

Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene., 2007, 26(91324-1337

[6]

Chota A, George BP, Abrahamse H, et al.. Interactions of multidomain pro-apoptotic and anti-apoptotic proteins in cancer cell death. Oncotarget., 2021, 12(161615

[7]

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell., 2011, 144(5646-674

[8]

Plewka P, Raczynska KD. Long intergenic noncoding RNAs affect biological pathways underlying autoimmune and neurodegenerative disorders. Mol Neurobiol., 2022, 59(9): 5785-5808

[9]

Murphy E, Ardehali H, Balaban RS, et al.. Mitochondrial function, biology, and role in disease: a scientific statement from the American Heart Association. Circ Res., 2016, 118(12): 1960-1991

[10]

Decuypere JP, Parys JB, Bultynck G. Regulation of the autophagic Bcl-2/Beclin 1 interaction. Cells., 2012, 1(3): 284-312

[11]

Bonora M. Mithocondrial physiology and calcium signalling partnership: from regulation of differentiation to oncosuppressor activity. 2012.

[12]

Thomas S, Quinn BA, Das SK, et al.. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets., 2013, 17(1): 61-75

[13]

Garner TP, Lopez A, Reyna DE, et al.. Progress in targeting the BCL-2 family of proteins. Curr Opin Chem Biol., 2017, 39: 133-142

[14]

Bowman KER. A novel re-engineered p53-BH3 fusion gene therapeutic, p53-bad*, for treatment of hepatocellular carcinoma [PhD Thesis]. The University of Utah; 2020.

[15]

Strasser A. The role of BH3-only proteins in the immune system. Nat Rev Immunol., 2005, 5(3): 189-200

[16]

Schnorenberg MR, Bellairs JA, Samaeekia R, et al.. Activating the intrinsic pathway of apoptosis using BIM BH3 peptides delivered by peptide amphiphiles with endosomal release. Materials., 2019, 12(16): 2567

[17]

Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol., 2015, 89(3289-317

[18]

Kim YJ, Witwit H, Cubitt B, et al.. Inhibitors of anti-apoptotic Bcl-2 family proteins exhibit potent and broad-spectrum anti-mammarenavirus activity via cell cycle arrest at G0/G1 phase. J Virol., 2021, 95(24): 10-1128

[19]

Alves NL, Derks IA, Berk E, et al.. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity., 2006, 24(6): 703-716

[20]

Kalinec GM, Fernandez-Zapico ME, Urrutia R, et al.. Pivotal role of Harakiri in the induction and prevention of gentamicin-induced hearing loss. Proc Natl Acad Sci U S A., 2005, 102(44): 16019-16024

[21]

Llambi F, Moldoveanu T, Tait SW, et al.. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell., 2011, 44(4): 517-531

[22]

Bonnefond ML, Lambert B, Giffard F, et al.. Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-xL strategies through Mcl-1 down-regulation. Apoptosis., 2015, 20(4): 535-550

[23]

Fleischer B, Schulze-Bergkamen H, Schuchmann M, et al.. Mcl-1 is an anti-apoptotic factor for human hepatocellular carcinoma. Int J Oncol., 2006, 28(1): 25-32

[24]

O’Connor L. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J., 1998, 17(2): 384-395

[25]

Weber A, Paschen SA, Heger K, et al.. BimS-induced apoptosis requires mitochondrial localization but not interaction with anti-apoptotic Bcl-2 proteins. J Cell Biol., 2007, 177(4): 625-636

[26]

Danial NN, Walensky LD, Zhang CY, et al.. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med., 2008, 14(2): 144-153

[27]

Hekman M, Albert S, Galmiche A, et al.. Reversible membrane interaction of BAD requires two C-terminal lipid binding domains in conjunction with 14-3-3 protein binding. J Biol Chem., 2006, 281(25): 17321-17336

[28]

Boyd JM, Gallo GJ, Elangovan B, et al.. Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene., 1995, 11(9): 1921-1928

[29]

Galindo KA, Lu WJ, Park JH, et al.. The Bax/Bak ortholog in Drosophila, Debcl, exerts limited control over programmed cell death. Dev., 2009, 136(2): 275-284

[30]

Hardwick JM, Chen Chen, Jonas EA. Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol., 2012, 22(6): 318-328

[31]

González JM, Esteban M. A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history. Virol J., 2010, 7(1): 59

[32]

Peterson JS, Bass BP, Jue D, et al.. Noncanonical cell death pathways act during Drosophila oogenesis. Genesis., 2007, 45(6396-404

[33]

Petros AM, Olejniczak ET, Fesik SW. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta., 2004, 1644(2–3): 83-94

[34]

Ashkenazi A, Fairbrother WJ, Leverson JD, et al.. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov., 2017, 16(4): 273-284

[35]

Czabotar PE, Lessene G, Strasser A, et al.. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol., 2014, 15(1): 49-63

[36]

Kuwana T, Bouchier-Hayes L, Chipuk JE, et al.. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell., 2005, 17(4): 525-535

[37]

Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell., 2000, 103(4): 645-654

[38]

Kim H, Tu HC, Ren D, et al.. Stepwise activation of BAX and BAK by tBid, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell., 2009, 36(3): 487-499

[39]

Nechushtan A, Smith CL, Hsu YT, et al.. Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J., 1999, 18(9): 2330-2341

[40]

Tsai CJ, Liu S, Hung CL, et al.. BAX-induced apoptosis can be initiated through a conformational selection mechanism. Structure., 2015, 23(1): 139-148

[41]

Gahl RF, He Y, Yu S, et al.. Conformational rearrangements in the pro-apoptotic protein, Bax, as it inserts into mitochondria: a cellular death switch. J Biol Chem., 2014, 289(47): 32871-32882

[42]

Garner TP, Reyna DE, Priyadarshi A, et al.. An autoinhibited dimeric form of BAX regulates the BAX activation pathway. Mol Cell., 2016, 63(3): 485-497

[43]

Moldoveanu T, Grace CR, Llambi F, et al.. Bid-induced structural changes in BAK promote apoptosis. Nat Struct Mol Biol., 2013, 20(5): 589-597

[44]

Peng J, Tan C, Roberts GJ, et al.. tBid elicits a conformational alteration in membrane-bound Bcl-2 such that it inhibits Bax pore formation. J Biol Chem., 2006, 281(47): 35802-35811

[45]

Smits C, Czabotar PE, Hinds MG, et al.. Structural plasticity underpins promiscuous binding of the prosurvival protein A1. Structure., 2008, 16(5): 818-829

[46]

Roberts AW. Therapeutic development and current uses of BCL-2 inhibition. Hematol Am Soc Hematol Educ Program Book., 2020, 2020(1): 1-9

[47]

Merino D, Kelly GL, Lessene G, et al.. BH3-mimetic drugs: blazing the trail for new cancer medicines. Cancer Cell., 2018, 34(6): 879-891

[48]

Liu Q, Osterlund EJ, Chi X, et al.. Bim escapes displacement by BH3-mimetic anti-cancer drugs by double-bolt locking both Bcl-XL and Bcl-2. Elife., 2019, 8 e37689

[49]

Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ., 2018, 25(1): 65-80

[50]

Moldoveanu T, Liu Q, Tocilj A, et al.. The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol Cell., 2006, 24(5): 677-688

[51]

Wang H, Takemoto C, Akasaka R, et al.. Novel dimerization mode of the human Bcl-2 family protein Bak, a mitochondrial apoptosis regulator. J Struct Biol., 2009, 166(1): 32-37

[52]

Hsu SY, Kaipia A, McGee E, et al.. Bok is a pro-apoptotic Bcl-2 protein with restricted expression in reproductive tissues and heterodimerizes with selective anti-apoptotic Bcl-2 family members. Proc Natl Acad Sci., 1997, 94(23): 12401-12406

[53]

Fernández-Marrero Y, Bleicken S, Das KK, et al.. The membrane activity of BOK involves formation of large, stable toroidal pores and is promoted by CBid. FEBS J., 2017, 284(5): 711-724

[54]

Llambi F, Wang YM, Victor B, et al.. BOK is a non-canonical BCL-2 family effector of apoptosis regulated by ER-associated degradation. Cell., 2016, 165(2): 421-433

[55]

Zheng JH, Grace CR, Guibao CD, et al.. Intrinsic instability of BOK enables membrane permeabilization in apoptosis. Cell Rep., 2018, 23(7): 2083-2094

[56]

Fernandez-Marrero Y, Ke F, Echeverry N, et al.. Is BOK required for apoptosis induced by endoplasmic reticulum stress?. Proc Natl Acad Sci., 2016, 113(5): 492-493

[57]

Carpio MA, Michaud M, Zhou W, et al.. BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proc Natl Acad Sci., 2015, 112(23): 7201-7206

[58]

Ke FF, Vanyai HK, Cowan AD, et al.. Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX, BAK, and BOK. Cell., 2018, 173(5): 1217-1230

[59]

Gillies LA, Du H, Peters B, et al.. Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes. Mol Biol Cell., 2015, 26(2): 339-349

[60]

Bleicken S, Landeta O, Landajuela A, et al.. Proapoptotic Bax and Bak proteins form stable protein-permeable pores of tunable size. J Biol Chem., 2013, 288(46): 33241-33252

[61]

Korsmeyer SJ. Pro-apoptotic cascade activates Bid, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ., 2007, 11: 66

[62]

Rm K. The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J Cell Biol., 1999, 147: 809-822

[63]

Doerflinger M, Glab JA, Puthalakath H. BH3-only proteins: a 20-year stock-take. FEBS J., 2015, 282(6): 1006-1016

[64]

Jullien M, Gomez-Bougie P, Chiron D, et al.. Restoring apoptosis with BH3 mimetics in mature B-cell malignancies. Cells., 2020, 9(3): 717

[65]

Kvansakul M, Hinds MG. The structural biology of BH3-only proteins. Methods Enzymol., 2014, 544: 49-74

[66]

Hutt KJ. The role of BH3-only proteins in apoptosis within the ovary. Reproduction., 2015, 149(2R81-R89

[67]

Dai H, Ding H, Peterson KL, et al.. Measurement of BH3-only protein tolerance. Cell Death Differ., 2018, 25(2): 282-293

[68]

Glab JA, Mbogo GW, Puthalakath H. BH3-only proteins in health and disease. Int Rev Cell Mol Biol., 2017, 328: 163-196

[69]

Moldoveanu T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. BioEssays., 2023, 45(3): 2200221

[70]

Dai H, Meng XW, Kaufmann SH. Mitochondrial apoptosis and BH3 mimetics. F1000Res. 2016;5:2804.

[71]

Kuehl T, Lagares D. BH3 mimetics as anti-fibrotic therapy: unleashing the mitochondrial pathway of apoptosis in myofibroblasts. Matrix Biol., 2018, 68: 94-105

[72]

Billen LP, Shamas-Din A, Andrews DW. Bid: a Bax-like BH3 protein. Oncogene., 2008, 27(1S93-104

[73]

Singh PK, Roukounakis A, Frank DO, et al.. Dynein light chain 1 induces assembly of large Bim complexes on mitochondria that stabilize Mcl-1 and regulate apoptosis. Genes Dev., 2017, 31(17): 1754-1769

[74]

Liu Y, Mondello P, Erazo T, et al.. NOXA genetic amplification or pharmacologic induction primes lymphoma cells to BCL2 inhibitor-induced cell death. Proc Natl Acad Sci., 2018, 115(47): 12034-12039

[75]

O’Reilly LA, Cullen L, Visvader J, et al.. The proapoptotic BH3-only protein bim is expressed in hematopoietic, epithelial, neuronal, and germ cells. Am J Pathol., 2000, 157(2): 449-461

[76]

Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans., 2001, 29(6): 684-688

[77]

Zha J, Harada H, Yang E, et al.. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL. Cell., 1996, 87(4): 619-628

[78]

Leber B, Lin J, Andrews DW. Embedded together: The life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis., 2007, 12(5): 897-911

[79]

Lovell JF, Billen LP, Bindner S, et al.. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell., 2008, 135(6): 1074-1084

[80]

Shamas-Din A, Bindner S, Zhu W, et al.. tBid undergoes multiple conformational changes at the membrane required for Bax activation. J Biol Chem., 2013, 288(30): 22111-22127

[81]

Chou JJ, Li H, Salvesen GS, et al.. Solution structure of Bid, an intracellular amplifier of apoptotic signaling. Cell., 1999, 96(5): 615-624

[82]

Hinds MG, Smits C, Fredericks-Short R, et al.. Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ., 2007, 14(1): 128-136

[83]

Gavathiotis E, Suzuki M, Davis ML, et al.. BAX activation is initiated at a novel interaction site. Nature., 2008, 455(7216): 1076-1081

[84]

Kushnareva Y, Andreyev AY, Kuwana T, Newmeyer DD. Bax activation initiates the assembly of a multimeric catalyst that facilitates Bax pore formation in mitochondrial outer membranes. PLoS Biol., 2012, 10(12 e1001394

[85]

Xu XP, Zhai D, Kim E, et al.. Three-dimensional structure of Bax-mediated pores in membrane bilayers. Cell Death Dis., 2013, 4(6 e683

[86]

Volkmann N, Marassi FM, Newmeyer DD, Hanein D. The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ., 2014, 21(2): 206-215

[87]

Große L, Wurm CA, Brüser C, et al.. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J., 2016, 35(4): 402-413

[88]

Salvador-Gallego R, Mund M, Cosentino K, et al.. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J., 2016, 35(4): 389-401

[89]

McArthur K, Whitehead LW, Heddleston JM, et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018;359(6378):eaao6047.

[90]

Riley JS, Quarato G, Cloix C, et al.. Mitochondrial inner membrane permeabilisation enables mt DNA release during apoptosis. EMBO J., 2018, 37(17 e99238

[91]

Cosentino K, García-Sáez AJ. MIM through MOM: the awakening of Bax and Bak pores. EMBO J., 2018, 37(17 e100340

[92]

Czabotar PE, Westphal D, Dewson G, et al.. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell., 2013, 152(3): 519-531

[93]

Liao C, Zhang Z, Kale J, et al.. Conformational heterogeneity of Bax helix 9 dimer for apoptotic pore formation. Sci Rep., 2016, 6(1): 29502

[94]

Zhang Z, Subramaniam S, Kale J, et al.. BH3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes. EMBO J., 2016, 35(2208-236

[95]

Uren RT, O’Hely M, Iyer S, et al.. Disordered clusters of Bak dimers rupture mitochondria during apoptosis. Elife., 2017, 6 e19944

[96]

Li M, Wang D, He J, et al.. Bcl-XL: a multifunctional anti-apoptotic protein. Pharmacol Res., 2020, 151 104547

[97]

Warren CF, Wong-Brown MW, Bowden NA. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis., 2019, 10(3): 177

[98]

Uren RT, Iyer S, Kluck RM. Pore formation by dimeric Bak and Bax: an unusual pore?. Philos Trans R Soc B Biol Sci., 2017, 372(172620160218

[99]

Cosentino K, García-Sáez AJ. Bax and Bak pores: are we closing the circle?. Trends Cell Biol., 2017, 27(4266-275

[100]

Bleicken S, Assafa TE, Stegmueller C, et al.. Topology of active, membrane-embedded Bax in the context of a toroidal pore. Cell Death Differ., 2018, 25(10): 1717-1731

[101]

Westphal D, Dewson G, Menard M, et al.. Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proc Natl Acad Sci., 2014, 111(39): E4076-E4085

[102]

Montessuit S, Somasekharan SP, Terrones O, et al.. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell., 2010, 142(6): 889-901

[103]

Kuwana T, Mackey MR, Perkins G, et al.. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell., 2002, 111(3): 331-342

[104]

Terrones O, Antonsson B, Yamaguchi H, et al.. Lipidic pore formation by the concerted action of proapoptotic BAX and tBid. J Biol Chem., 2004, 279(29): 30081-30091

[105]

Bleicken S, Jeschke G, Stegmueller C, et al.. Structural model of active Bax at the membrane. Mol Cell., 2014, 56(4): 496-505

[106]

Subburaj Y, Cosentino K, Axmann M, et al.. Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat Commun., 2015, 6(1): 8042

[107]

Kuwana T, Olson NH, Kiosses WB, et al.. Pro-apoptotic Bax molecules densely populate the edges of membrane pores. Sci Rep., 2016, 6(127299

[108]

Basanez G, Sharpe JC, Galanis J, et al.. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem., 2002, 277(5149360-49365

[109]

Bloch NB, Wales TE, Prew MS, et al.. The conformational stability of pro-apoptotic BAX is dictated by discrete residues of the protein core. Nat Commun., 2021, 12(1): 4932

[110]

Hauseman ZJ, Harvey EP, Newman CE, et al.. Homogeneous oligomers of pro-apoptotic BAX reveal structural determinants of mitochondrial membrane permeabilization. Mol Cell., 2020, 79(168-83

[111]

Jiang J, Huang Z, Zhao Q, et al.. Interplay between bax, reactive oxygen species production, and cardiolipin oxidation during apoptosis. Biochem Biophys Res Commun., 2008, 368(1): 145-150

[112]

Ott M, Robertson JD, Gogvadze V, et al.. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci., 2002, 99(3): 1259-1263

[113]

Nomura K, Imai H, Koumura T, et al.. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J., 2000, 351(1): 183-193

[114]

Lucken-Ardjomande S, Montessuit S, Martinou JC. Bax activation and stress-induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes. Cell Death Differ., 2008, 15(3): 484-493

[115]

Christenson E, Merlin S, Saito M, et al.. Cholesterol effects on BAX pore activation. J Mol Biol., 2008, 381(5): 1168-1183

[116]

Shamas-Din A, Bindner S, Chi X, et al.. Distinct lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax. Biochem J., 2015, 467(3): 495-505

[117]

Montero J, Morales A, Llacuna L, et al.. Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res., 2008, 68(13): 5246-5256

[118]

Ding J, Mooers BH, Zhang Z, et al.. After embedding in membranes antiapoptotic Bcl-XL protein binds both Bcl-2 homology region 3 and helix 1 of proapoptotic Bax protein to inhibit apoptotic mitochondrial permeabilization. J Biol Chem., 2014, 289(17): 11873-11896

[119]

Dlugosz PJ, Billen LP, Annis MG, et al.. Bcl-2 changes conformation to inhibit Bax oligomerization. EMBO J., 2006, 25(11): 2287-2296

[120]

Zhao L, He F, Liu H, et al.. Natural diterpenoid compound elevates expression of Bim protein, which interacts with antiapoptotic protein Bcl-2, converting it to proapoptotic Bax-like molecule. J Biol Chem., 2012, 287(2): 1054-1065

[121]

Peng J, Ding J, Tan C, et al.. Oligomerization of membrane-bound Bcl-2 is involved in its pore formation induced by tBid. Apoptosis., 2009, 14: 1145-1153

[122]

Zhang Z, Lapolla SM, Annis MG, et al.. Bcl-2 homodimerization involves two distinct binding surfaces, a topographic arrangement that provides an effective mechanism for Bcl-2 to capture activated Bax. J Biol Chem., 2004, 279(42): 43920-43928

[123]

Ding J, Zhang Z, Roberts GJ, et al.. Bcl-2 and Bax interact via the BH1–3 groove-BH3 motif interface and a novel interface involving the BH4 motif. J Biol Chem., 2010, 285(37): 28749-28763

[124]

Souers AJ, Leverson JD, Boghaert ER, et al.. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med., 2013, 19(2): 202-208

[125]

Tse C, Shoemaker AR, Adickes J, et al.. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res., 2008, 68(9): 3421-3428

[126]

Kolluri SK, Zhu X, Zhou X, et al.. A short Nur77-derived peptide converts Bcl-2 from a protector to a killer. Cancer Cell., 2008, 14(4): 285-298

[127]

Aranovich A, Liu Q, Collins T, et al.. Differences in the mechanisms of proapoptotic BH3 proteins binding to Bcl-XL and Bcl-2 quantified in live MCF-7 cells. Mol Cell., 2012, 45(6): 754-763

[128]

Liu Q, Leber B, Andrews DW. Interactions of pro-apoptotic BH3 proteins with anti-apoptotic Bcl-2 family proteins measured in live MCF-7 cells using FLIM FRET. Cell Cycle., 2012, 11(19): 3536-3542

[129]

Niu X, Brahmbhatt H, Mergenthaler P, et al.. A small-molecule inhibitor of Bax and Bak oligomerization prevents genotoxic cell death and promotes neuroprotection. Cell Chem Biol., 2017, 24(4): 493-506

[130]

Garner TP, Amgalan D, Reyna DE, et al.. Small-molecule allosteric inhibitors of BAX. Nat Chem Biol., 2019, 15(4): 322-330

[131]

Cory S, Huang D, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene., 2003, 22(53): 8590-8607

[132]

Jabbour L. Role of the Bcl-2 family of cell death regulators at the Endoplasmic Reticulum. PhD Thesis. Université de Lyon; 2020.

[133]

Tang SX, Camara CM, Franco JA, et al.. Dissecting the neuroprotective interaction between the BH4 domain of BCL-w and the IP3 receptor. Cell Chem Biol., 2024, 31(10): 1815-1826

[134]

Polager S, Kalma Y, Berkovich E, Ginsberg D. E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene., 2002, 21(3): 437-446

[135]

Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol., 2010, 11(9): 621-632

[136]

Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell., 2010, 37(3): 299-310

[137]

Wali JA, Rondas D, McKenzie MD, et al.. The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity. Cell Death Dis., 2014, 5(3 e1124

[138]

Soderquist R, Pletnev AA, Danilov AV, Eastman A. The putative BH3 mimetic S1 sensitizes leukemia to ABT-737 by increasing reactive oxygen species, inducing endoplasmic reticulum stress, and upregulating the BH3-only protein NOXA. Apoptosis, 2014, 19: 201-209

[139]

Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. BH3-only proteins: Orchestrators of apoptosis. Biochim Biophys Acta BBA-Mol Cell Res., 2011, 1813(4): 508-520

[140]

Shortt J, Johnstone RW. Oncogenes in cell survival and cell death. Cold Spring Harb Perspect Biol, 2012, 4(12 a009829

[141]

Emily HYC, Wei MC, Weiler S, et al.. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell, 2001, 8(3): 705-711

[142]

Yip KW, Reed JC. Bcl-2 family proteins and cancer. Oncogene., 2008, 27(50): 6398-6406

[143]

Golubovskaya VM, Ho B, Zheng M, et al.. Disruption of focal adhesion kinase and p53 interaction with small molecule compound R2 reactivated p53 and blocked tumor growth. BMC Cancer., 2013, 13(1): 342

[144]

Matheu A, Maraver A, Klatt P, et al.. Delayed ageing through damage protection by the Arf/p53 pathway. Nature., 2007, 448(7151375-379

[145]

Leu JIJ, Dumont P, Hafey M, et al.. Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex. Nat Cell Biol., 2004, 6(5): 443-450

[146]

Moravcikova E, Krepela E, Prochazka J, et al.. Differential sensitivity to apoptosome apparatus activation in non-small cell lung carcinoma and the lung. Int J Oncol., 2014, 44(5): 1443-1454

[147]

Calin GA, Ferracin M, Cimmino A, et al.. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med., 2005, 353(17): 1793-1801

[148]

Zhong F, Davis MC, McColl KS, et al.. Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol., 2006, 172(1): 127-137

[149]

Caroline HY, Pan H, Seebacher J, et al.. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell., 2011, 146(4): 607-620

[150]

Du C, Fang M, Li Y, et al.. Smac, a mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP inhibition. Cell., 2000, 102(1): 33-42

[151]

Hegde R, Srinivasula SM, Zhang Z, et al.. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem., 2002, 277(1): 432-438

[152]

Cheung WC, Kim JS, Linden M, et al.. Novel targeted deregulation of c-Myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice. J Clin Invest., 2004, 113(12): 1763-1773

[153]

Horita M, Andreu EJ, Benito A, et al.. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5–dependent expression of Bcl-xL. J Exp Med., 2000, 191(6): 977-984

[154]

Cho-Vega JH, Rassidakis GZ, Admirand JH, et al.. MCL-1 expression in B-cell non-Hodgkin’s lymphomas. Hum Pathol., 2004, 35(9): 1095-1100

[155]

Brien G, Trescol-Biemont MC, Bonnefoy-Berard N. Downregulation of Bfl-1 protein expression sensitizes malignant B cells to apoptosis. Oncogene., 2007, 26(39): 5828-5832

[156]

Bae IH, Park MJ, Yoon SH, et al.. Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res., 2006, 66(10): 4991-4995

[157]

Kelly PN, Strasser A. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ., 2011, 18(9): 1414-1424

[158]

Tashiro E, Kitagawa M, Imoto M. Osada H. Apoptosis and Autophagy. Bioprobes [Internet], 2017, Tokyo, Springer Japan75113

[159]

Wu G, Chai J, Suber TL, et al.. Structural basis of IAP recognition by Smac/DIABLO. Nature., 2000, 408(6815): 1008-1012

[160]

Luo X, Budihardjo I, Zou H, et al.. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell., 1998, 94(4): 481-490

[161]

Li H, Zhu H, Xu CJ, et al.. Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell., 1998, 94(4): 491-501

RIGHTS & PERMISSIONS

The Author(s), under exclusive licence to the Huazhong University of Science and Technology

AI Summary AI Mindmap
PDF

5

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/