Aberrant Sialylation in Ovarian Cancer: Orchestrating Progression, Metastasis, and Therapeutic Hurdles

Yu-xin Chen , Guang-nian Zhao , Qing-lei Gao

Current Medical Science ›› 2025, Vol. 45 ›› Issue (3) : 395 -404.

PDF
Current Medical Science ›› 2025, Vol. 45 ›› Issue (3) : 395 -404. DOI: 10.1007/s11596-025-00041-3
Review
review-article

Aberrant Sialylation in Ovarian Cancer: Orchestrating Progression, Metastasis, and Therapeutic Hurdles

Author information +
History +
PDF

Abstract

Ovarian cancer (OC), a highly lethal gynaecological malignancy, is often diagnosed at advanced stages, resulting in a poor prognosis. Sialylation, an important form of glycosylation, significantly contributes to the progression of various solid tumours, including OC. Aberrant sialylation promotes tumour progression and metastasis by altering the structure and function of glycoproteins. Although its role in several solid tumours is well documented, the role of abnormal sialylation in OC and its potential as a therapeutic target remain poorly understood. This review highlights sialylation as a key regulator of the progression, metastasis, and drug resistance of OC. A deeper understanding of altered sialylation can contribute to the identification of novel therapeutic strategies for OC.

Keywords

Ovarian cancer / Sialylation / Immune evasion / Tumor progression / Metastasis / Sialyltransferase

Cite this article

Download citation ▾
Yu-xin Chen, Guang-nian Zhao, Qing-lei Gao. Aberrant Sialylation in Ovarian Cancer: Orchestrating Progression, Metastasis, and Therapeutic Hurdles. Current Medical Science, 2025, 45(3): 395-404 DOI:10.1007/s11596-025-00041-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrayF, LaversanneM, SungH, et al.. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin., 2024, 74(3): 229-263.

[2]

ZengH, ZhengR, GuoY, et al.. Cancer survival in China, 2003–2005: a population-based study: cancer survival in China. Int J Cancer., 2015, 136(8): 1921-1930.

[3]

LedermannJA, RajaFA, FotopoulouC, et al.. Newly diagnosed and relapsed epithelial ovarian carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol., 2013, 24: vi24-vi32.

[4]

AkterS, RahmanMA, HasanMN, et al.. Recent advances in ovarian cancer: therapeutic strategies, potential biomarkers, and technological improvements. Cells., 2022, 114650.

[5]

TikhonovD, KulikovaL, KopylovAT, et al.. Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Sci Rep., 2021, 11119318.

[6]

OhtsuboK, MarthJD. Glycosylation in cellular mechanisms of health and disease. Cell., 2006, 126(5): 855-867.

[7]

Wolters-EisfeldG, Oliveira-FerrerL. Glycan diversity in ovarian cancer: unraveling the immune interplay and therapeutic prospects. Semin Immunopathol., 2024, 46616.

[8]

LutherKB, HaltiwangerRS. Role of unusual O-glycans in intercellular signaling. Int J Biochem Cell Biol., 2009, 41(5): 1011-1024.

[9]

PinhoSS, ReisCA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer., 2015, 15(9): 540-555.

[10]

VajariaBN, PatelKR, BegumR, et al.. Sialylation: an avenue to target cancer cells. Pathol Oncol Res., 2016, 22(3): 443-447.

[11]

LiF, DingJ. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell., 2019, 10(8): 550-565.

[12]

VarkiA. Sialic acids in human health and disease. Trends Mol Med., 2008, 14(8): 351-360.

[13]

DobieC, SkropetaD. Insights into the role of sialylation in cancer progression and metastasis. Br J Cancer., 2021, 124(1): 76-90.

[14]

SzaboR, SkropetaD. Advancement of sialyltransferase inhibitors: therapeutic challenges and opportunities. Med Res Rev., 2017, 37(2): 219-270.

[15]

AudryM, JeanneauC, ImbertyA, et al.. Current trends in the structure-activity relationships of sialyltransferases. Glycobiology., 2011, 21(6): 716-726.

[16]

MiyagiT, TakahashiK, HataK, et al.. Sialidase significance for cancer progression. Glycoconjugate J., 2012, 29(8–9): 567-577.

[17]

HoldbrooksAT, BritainCM, BellisSL. ST6Gal-I sialyltransferase promotes tumor necrosis factor (TNF)-mediated cancer cell survival via sialylation of the TNF receptor 1 (TNFR1) death receptor. J Biol Chem., 2018, 293(5): 1610-1622.

[18]

SwindallAF, BellisSL. Sialylation of the fas death receptor by ST6Gal-I provides protection against fas-mediated apoptosis in colon carcinoma cells. J Biol Chem., 2011, 286(26): 22982-22990.

[19]

LäubliH, BorsigL. Altered cell adhesion and glycosylation promote cancer immune suppression and metastasis. Front Immunol., 2019, 102120.

[20]

MunkleyJ. The role of sialyl-tn in cancer. Int J Mol Sci., 2016, 173275.

[21]

SewellR, BäckströmM, DalzielM, et al.. The ST6GalNAc-I sialyltransferase localizes throughout the golgi and is responsible for the synthesis of the tumor-associated sialyl-tn O-glycan in human breast cancer. J Biol Chem., 2006, 281(6): 3586-3594.

[22]

Al-AlemL, PrendergastJM, ClarkJ, et al.. Sialyl-Tn serves as a potential therapeutic target for ovarian cancer. J Ovarian Res., 2024, 17171.

[23]

BärenwaldtA, LäubliH. The sialoglycan-Siglec glyco-immune checkpoint—a target for improving innate and adaptive anti-cancer immunity. Expert Opin Ther Targets., 2019, 23(10): 839-853.

[24]

Van De WallS, SantegoetsKCM, Van HoutumEJH, et al.. Sialoglycans and siglecs can shape the tumor immune microenvironment. Trends Immunol., 2020, 41(4): 274-285.

[25]

StanczakMA, LäubliH. Siglec receptors as new immune checkpoints in cancer. Mol Aspects Med., 2023, 90. 101112

[26]

WangP, LeeW, JuangC, et al.. Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol Oncol., 2005, 99(3): 631-639.

[27]

CaoK, ZhangG, YangM, et al.. Attenuation of sialylation augments antitumor immunity and improves response to immunotherapy in ovarian cancer. Cancer Res., 2023, 83(13): 2171-2186.

[28]

SchultzMJ, HoldbrooksAT, ChakrabortyA, et al.. The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res., 2016, 76(13): 3978-3988.

[29]

SatyavarapuEM, NathS, MandalC. Desialylation of Atg5 by sialidase (Neu2) enhances autophagosome formation to induce anchorage-dependent cell death in ovarian cancer cells. Cell Death Dis., 2021, 7126.

[30]

OuL, HeX, LiuN, et al.. Sialylation of FGFR1 by ST6Gal-I overexpression contributes to ovarian cancer cell migration and chemoresistance. Mol Med Rep., 2020, 21(3): 1449-1460

[31]

WeeP, WangZ. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers., 2017, 9552.

[32]

AnkenbauerKE, RaoTC, MattheysesAL, et al.. Sialylation of EGFR by ST6GAL1 induces receptor activation and modulates trafficking dynamics. J Biol Chem., 2023, 29910. 105217

[33]

WenK-C, SungP-L, HsiehS-L, et al.. α2,3-sialyltransferase type I regulates migration and peritoneal dissemination of ovarian cancer cells. Oncotarget., 2017, 8(17): 29013-29027.

[34]

BritainCM, HoldbrooksAT, AndersonJC, et al.. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death. J Ovarian Res., 2018, 11112.

[35]

ShiJ, ZhouR, WangS, et al.. NEU4-mediated desialylation enhances the activation of the oncogenic receptors for the dissemination of ovarian carcinoma. Oncogene., 2024, 43(49): 3556-3569.

[36]

RaoTC, BeggsRR, AnkenbauerKE, et al.. ST6Gal-I–mediated sialylation of the epidermal growth factor receptor modulates cell mechanics and enhances invasion. J Biol Chem., 2022, 2984. 101726

[37]

YangJ, WeinbergRA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell., 2008, 14(6): 818-829.

[38]

WuX, ZhaoJ, RuanY, et al.. Sialyltransferase ST3GAL1 promotes cell migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer. Cell Death Dis., 2018, 9111102.

[39]

MiyazonoK. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci., 2009, 85(8): 314-323.

[40]

LengyelE. Ovarian cancer development and metastasis. Am J Pathol., 2010, 177(3): 1053-1064.

[41]

ThomakosN, DiakosavvasM, MachairiotisN, et al.. Rare distant metastatic disease of ovarian and peritoneal carcinomatosis: a review of the literature. Cancers., 2019, 1181044.

[42]

ChristieDR, ShaikhFM, LucasJA, et al.. ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res., 2008, 113.

[43]

JonesRB, SilvaAD, AnkenbauerKE, et al.. Role of the ST6GAL1 sialyltransferase in regulating ovarian cancer cell metabolism. Glycobiology., 2023, 33(8): 626-636.

[44]

SungP-L, WenK-C, HorngH-C, et al.. The role of α2,3-linked sialylation on clear cell type epithelial ovarian cancer. Taiwan J Obstet Gynecol., 2018, 57(2): 255-263.

[45]

FoxA, LeonardGD, AdzibolosuN, et al.. Adipose microenvironment promotes hypersialylation of ovarian cancer cells. Front Oncol., 2024, 141432333.

[46]

TamadaY, NomuraH, AokiD, et al.. A possible inhibitory role of sialic acid on MUC1 in peritoneal dissemination of clear cell-type ovarian cancer cells. Molecules., 2021, 26195962.

[47]

SchultzMJ, SwindallAF, WrightJW, et al.. ST6Gal-I sialyltransferase confers cisplatin resistance in ovarian tumor cells. J Ovarian Res., 2013, 6125.

[48]

HuangS, DayTW, ChoiM-R, et al.. Human β-galactoside α-2,3-sialyltransferase (ST3Gal III) attenuated Taxol-induced apoptosis in ovarian cancer cells by downregulating caspase-8 activity. Mol Cell Biochem., 2009, 331(1–2): 81-88.

[49]

CrockerPR, PaulsonJC, VarkiA. Siglecs and their roles in the immune system. Nat Rev Immunol., 2007, 7(4): 255-266.

[50]

LäubliH, NalleSC, MaslyarD. Targeting the siglec–sialic acid immune axis in cancer: current and future approaches. Cancer Immunol Res., 2022, 10(12): 1423-1432.

[51]

BordoloiD, KulkarniAJ, AdenijiOS, et al.. Siglec-7 glyco-immune binding mAbs or NK cell engager biologics induce potent antitumor immunity against ovarian cancers. Sci Adv., 2023, 944eadh4379.

[52]

Kui WongN, EastonRL, PanicoM, et al.. Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. J Biol Chem., 2003, 278(31): 28619-28634.

[53]

GubbelsJA, BelisleJ, OndaM, et al.. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer., 2006, 5150.

[54]

BelisleJA, HoribataS, JenniferGAA, et al.. Identification of siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol Cancer., 2010, 9118.

[55]

WuY, LiuQ, XieY, et al.. MUC16 stimulates neutrophils to an inflammatory and immunosuppressive phenotype in ovarian cancer. J Ovarian Res., 2023, 161181.

[56]

BarkalAA, BrewerRE, MarkovicM, et al.. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature., 2019, 572(7769): 392-396.

[57]

ZhengQ, DuX, ZhangJ, et al.. Delivery of SIRT1 by cancer-associated adipocyte-derived extracellular vesicles regulates immune response and tumorigenesis of ovarian cancer cells. Clin Transl Oncol., 2023, 26(1): 190-203.

[58]

ChenC, ZhangL, RuanZ. GATA3 encapsulated by tumor-associated macrophage-derived extracellular vesicles promotes immune escape and chemotherapy resistance of ovarian cancer cells by upregulating the CD24/Siglec-10 Axis. Mol Pharmaceutics., 2023, 20(2): 971-986.

[59]

ChenG-Y, BrownNK, ZhengP, et al.. Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology., 2014, 24(9): 800-806.

[60]

ChenG-Y, ChenX, KingS, et al.. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat Biotechnol., 2011, 29(5): 428-435.

[61]

ToubaiT, HouG, MathewsonN, et al.. Siglec-G-CD24 axis controls the severity of graft-versus-host disease in mice. Blood., 2014, 123(22): 3512-3523.

[62]

WangY, HeM, ZhangC, et al.. Siglec-9+ tumor-associated macrophages delineate an immunosuppressive subset with therapeutic vulnerability in patients with high-grade serous ovarian cancer. J Immunother Cancer., 2023, 119. e007099

[63]

BerbećH, PaszkowskaA, SiwekB, et al.. Total serum sialic acid concentration as a supporting marker of malignancy in ovarian neoplasia. Eur J Gynaecol Oncol., 1999, 20(5–6): 389-392

[64]

ShettyV, HafnerJ, ShahP, et al.. Investigation of ovarian cancer associated sialylation changes in N-linked glycopeptides by quantitative proteomics. Clin Proteomics., 2012, 9110.

[65]

KobayashiH, TeraoT, KawashimaY. Serum sialyl tn as an independent predictor of poor prognosis in patients with epithelial ovarian cancer. J Clin Oncol., 1992, 10(1): 95-101.

[66]

SölétormosG, DuffyMJ, Abu HassanSO, et al.. Clinical use of cancer biomarkers in epithelial ovarian cancer: Updated guidelines from the european group on tumor markers. Int J Gynecol Cancer., 2016, 26(1): 43-51.

[67]

AkitaK, YoshidaS, IkeharaY, et al.. Different levels of Sialyl-Tn antigen expressed on MUC16 in patients with endometriosis and ovarian cancer. Int J Gynecol Cancer., 2012, 22(4): 531-538.

[68]

MikamiM, TanabeK, MatsuoK, et al.. Fully-sialylated alpha-chain of complement 4-binding protein: diagnostic utility for ovarian clear cell carcinoma. Gynecol Oncol., 2015, 139(3): 520-528.

[69]

WuJ, XieX, NieS, et al.. Altered expression of sialylated glycoproteins in ovarian cancer sera using lectin-based ELISA assay and quantitative glycoproteomics analysis. J Proteome Res., 2013, 12(7): 3342-3352.

[70]

KobayashiH, TeraoT, KawashimaY. Clinical evaluation of circulating serum sialyl tn antigen levels in patients with epithelial ovarian cancer. J Clin Oncol., 1991, 9(6): 983-987.

[71]

WichertB, Milde-LangoschK, GalatenkoV, et al.. Prognostic role of the sialyltransferase ST6GAL1 in ovarian cancer. Glycobiology., 2018, 28(11): 898-903.

[72]

GrayMA, StanczakMA, MantuanoNR, et al.. Targeted glycan degradation potentiates the anticancer immune response in vivo. Nat Chem Biol., 2020, 16(12): 1376-1384.

[73]

HuangJ, LiM, MeiB, et al.. Whole-cell tumor vaccines desialylated to uncover tumor antigenic gal/GalNAc epitopes elicit anti-tumor immunity. J Transl Med., 2022, 201496.

[74]

MuradJP, KozlowskaAK, LeeHJ, et al.. Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol., 2018, 92268.

Funding

Natural Science Foundation of Hubei Province(2023AFB670)

RIGHTS & PERMISSIONS

The Author(s), under exclusive licence to Huazhong University of Science and Technology

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/