Kaempferol Improved Rheumatoid Arthritis by Regulating the Immune Imbalance of Treg/Th17
Nan Li , Yan-kui Yi , Jie Zhao , Qiang Wang , Jie-ying Yu , Yan-ting You , Yong-yan Zhu , Yan-yan Liu , Xiao-shan Zhao , Dong-mei Pan
Current Medical Science ›› : 1 -11.
Kaempferol Improved Rheumatoid Arthritis by Regulating the Immune Imbalance of Treg/Th17
The objective of this study was to explore the therapeutic effects of kaempferol (Kae) on rheumatoid arthritis (RA) and to elucidate the underlying mechanisms.
The collagen-induced arthritis (CIA) model was established using collagen II to induce RA. Mice were treated with Kae at a dose of 25 or 50 mg/kg/day via gavage. Pathological changes in the ankle joint were analyzed. Enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of inflammatory factors. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression of genes associated with the balance of regulatory T (Treg)/T helper 17 (Th17) cells. Flow cytometry was utilized to determine the Treg/Th17 ratio. Furthermore, these techniques were employed to evaluate the impact of miR-34a and Foxp3 dysregulation on cellular functions in RA under the influence of Kae. Dual luciferase reporter assay was conducted to analyze the binding of miR-34a to Foxp3.
Treatment with Kae led to a downregulation of receptor-related orphan receptor gamma t (RORγt) and IL-17 expression, and an upregulation of Foxp3, IL-10, and TGF-β expression in CIA mice. Kae intervention inhibited the production of proinflammatory cytokines and increased the production of anti-inflammatory cytokines. Furthermore, Kae treatment suppressed the expression of miR-34a, which was identified as a target of miR-34a. Finally, Kae regulated Treg/ Th17 balance-related genes and cellular inflammation through the miR-34a/Foxp3 axis.
The study demonstrated that Kae effectively ameliorates CIA in mice by modulating the Treg/Th17 balance and related genes via the miR-34a/Foxp3 axis. These findings suggest that Kae may serve as a promising therapeutic agent for the treatment of RA and for restoring immune homeostasis.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
Huazhong University of Science and Technology
/
| 〈 |
|
〉 |