Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1

Ji-xi Wan , Yu-qi Wang , Si-na Lan , Liu Chen , Ming-qian Feng , Xin Chen

Current Medical Science ›› 2023, Vol. 43 ›› Issue (5) : 855 -868.

PDF
Current Medical Science ›› 2023, Vol. 43 ›› Issue (5) : 855 -868. DOI: 10.1007/s11596-023-2774-x
Review

Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1

Author information +
History +
PDF

Abstract

Smad ubiquitylation regulatory factor 1 (Smurf1) is an important homologous member of E6-AP C-terminus type E3 ubiquitin ligase. Initially, Smurf1 was reportedly involved in the negative regulation of the bone morphogenesis protein (BMP) pathway. After further research, several studies have confirmed that Smurf1 is widely involved in various biological processes, such as bone homeostasis regulation, cell migration, apoptosis, and planar cell polarity. At the same time, recent studies have provided a deeper understanding of the regulatory mechanisms of Smurf1’s expression, activity, and substrate selectivity. In our review, a brief summary of recent important biological functions and regulatory mechanisms of E3 ubiquitin ligase Smurf1 is proposed.

Keywords

Smad ubiquitination regulator 1 / bone morphogenesis protein signaling / E3 ubiquitin ligase / cancer / bone homeostasis / nerve cell development

Cite this article

Download citation ▾
Ji-xi Wan, Yu-qi Wang, Si-na Lan, Liu Chen, Ming-qian Feng, Xin Chen. Research Progress in Function and Regulation of E3 Ubiquitin Ligase SMURF1. Current Medical Science, 2023, 43(5): 855-868 DOI:10.1007/s11596-023-2774-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MansourMA. Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol, 2018, 101: 80-93

[2]

BernassolaF, KarinM, CiechanoverA, et al.. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell, 2008, 14(1): 10-21

[3]

KogantiP, Levy-CohenG, BlankM. Smurfs in protein homeostasis, signaling, and cancer. Front Oncol, 2018, 8: 295

[4]

RapeM. Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol, 2018, 19(1): 59-70

[5]

KomanderD. The emerging complexity of protein ubiquitination. Biochem Soc Trans, 2009, 37(5): 37-53

[6]

KomanderD, RapeM. The ubiquitin code. Annu Rev Biochem, 2012, 81(1): 203-29

[7]

BeckDB, WernerA, KastnerDL, et al.. Disorders of ubiquitylation: unchained inflammation. Nat Rev Rheumatol, 2022, 18(8): 435-447

[8]

SwatekKN, KomanderD. Ubiquitin modifications. Cell Res, 2016, 26(4): 399-422

[9]

BernassolaF, ChillemiG, MelinoG. HECT-type E3 ubiquitin ligases in cancer. Trends Biochem Sci, 2019, 44(12): 1057-1075

[10]

LuK, LiP, ZhangM, et al.. Pivotal role of the C2 domain of the Smurf1 ubiquitin ligase in substrate selection. J Biol Chem, 2011, 286(19): 16861-1670

[11]

BoaseNA, KumarS. NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene, 2015, 557(2): 113-122

[12]

MorikawaM, DerynckR, MiyazonoK. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol, 2016, 8(5): a021873

[13]

ScottJL, FrickCT, JohnsonKA, et al.. Molecular analysis of membrane targeting by the C2 domain of the E3 ubiquitin ligase Smurf1. Biomolecules, 2020, 10(2): 229

[14]

FuL, CuiCP, ZhangX, et al.. The functions and regulation of Smurfs in cancers. Semin Cancer Biol, 2019, 67(2): 102-116

[15]

DavidD, NairSA, PillaiMR. Smurf E3 ubiquitin ligases at the cross roads of oncogenesis and tumor suppression. Biochim Biophys Acta, 2013, 1835(1): 119-128

[16]

NarimatsuM, BoseR, PyeM, et al.. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell, 2009, 137(2): 295-307

[17]

TascaA, AstlefordK, BlixtNC, et al.. SMAD1/5 signaling in osteoclasts regulates bone formation via coupling factors. PLoS One, 2018, 13(9): e0203404

[18]

FennenM, PapT, DankbarB. Smad-dependent mechanisms of inflammatory bone destruction. Arthritis Res Ther, 2016, 18(1): 279

[19]

LiH, CuiY, WeiJ, et al.. VCP/p97 increases BMP signaling by accelerating ubiquitin ligase Smurf1 degradation. FASEB J, 2019, 33(2): 2928-2943

[20]

HataA, ChenYG. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol, 2016, 8(9): a022061

[21]

Vander ArkA, CaoJ, LiX. TGF-beta receptors: In and beyond TGF-beta signaling. Cell Signal, 2018, 52: 112-120

[22]

NingJ, ZhaoY, YeY, et al.. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine, 2019, 41: 702-710

[23]

MurakamiK, EtlingerJD. Role of SMURF1 ubiquitin ligase in BMP receptor trafficking and signaling. Cell Signal, 2019, 54: 139-149

[24]

LiangC, PengS, LiJ, et al.. Inhibition of osteoblastic Smurf1 promotes bone formation in mouse models of distinctive age-related osteoporosis. Nat Commun, 2018, 9(1): 3428

[25]

YamashitaM, YingSX, ZhangGM, et al.. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell, 2005, 121(1): 101-113

[26]

GuoJ, QiuX, ZhangL, et al.. Smurf1 regulates macrophage proliferation, apoptosis and migration via JNK and p38 MAPK signaling pathways. Mol Immunol, 2018, 97: 20-26

[27]

MaX, WangD, LiN, et al.. Hippo kinase NDR2 inhibits IL-17 signaling by promoting Smurf1-mediated MEKK2 ubiquitination and degradation. Mol Immunol, 2019, 105: 131-136

[28]

ShimazuJ, WeiJ, KarsentyG. Smurf1 inhibits osteoblast differentiation, bone formation, and glucose homeostasis through serine 148. Cell Rep, 2016, 15(1): 27-35

[29]

WuM, ChenG, LiYP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res, 2016, 4: 16009

[30]

KomoriT. Roles of Runx2 in skeletal development. Adv Exp Med Biol, 2017, 962: 83-93

[31]

BrudererM, RichardsRG, AliniM, et al.. Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater, 2014, 28: 269-286

[32]

KomoriT. Regulation of Proliferation, Differentiation and functions of osteoblasts by Runx2. Int J Mol Sci, 2019, 20(7): 1694

[33]

KomoriT. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem Cell Biol, 2018, 149(4): 313-323

[34]

YangF, XuN, LiD, et al.. A feedback loop between RUNX2 and the E3 ligase SMURF1 in regulation of differentiation of human dental pulp stem cells. J Endod, 2014, 40(10): 1579-1586

[35]

WangW, DuH, LiuH, et al.. SMAD specific E3 ubiquitin protein ligase 1 promotes ovarian cancer cell migration and invasion via the activation of the RhoA/ROCK signaling pathway. Oncol Rep, 2019, 41(1): 668-676

[36]

ReidT, BathoornA, AhmadianMR, et al.. Identification and characterization of hPEM-2, a guanine nucleotide exchange factor specific for Cdc42. J Biol Chem, 1999, 274(47): 33587-33593

[37]

MurphyNP, MottHR, OwenD. Progress in the therapeutic inhibition of Cdc42 signalling. Biochem Soc Trans, 2021, 49(3): 1443-1456

[38]

MaldonadoMDM, DharmawardhaneS. Targeting Rac and Cdc42 GTPases in cancer. Cancer Res, 2018, 78(12): 3101-3111

[39]

AguilarBJ, ZhouH, LuQ. Cdc42 Signaling pathway inhibition as a therapeutic target in Ras- related cancers. Curr Med Chem, 2017, 24(32): 3485-3507

[40]

YamaguchiK, OharaO, AndoA, et al.. Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway. Biol Chem, 2008, 389(4): 405-413

[41]

SchmidtSI, BlaabjergM, FreudeK, et al.. RhoA signaling in neurodegenerative diseases. Cells, 2022, 11(9): 1520

[42]

TianM, BaiC, LinQ, et al.. Binding of RhoA by the C2 domain of E3 ligase Smurf1 is essential for Smurf1-regulated RhoA ubiquitination and cell protrusive activity. FEBS Lett, 2011, 585(14): 2199-2204

[43]

SahaiE, Garcia-MedinaR, PouysségurJ, et al.. Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol, 2007, 176(1): 35-42

[44]

KalpanaG, FigyC, YeungM, et al.. Reduced RhoA expression enhances breast cancer metastasis with a concomitant increase in CCR5 and CXCR4 chemokines signaling. Sci Rep, 2019, 9(1): 16351

[45]

ParkHH. Structural feature of TRAFs, their related human diseases and therapeutic intervention. Arch Pharm Res, 2021, 44(5): 475-486

[46]

WangX, JinC, TangY, et al.. Ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) by Smad ubiquitination regulatory factor 1 (Smurf1) regulates motility of breast epithelial and cancer cells. J Biol Chem, 2013, 288(30): 21784-21792

[47]

ZhangL, ZhouF, Garcia de VinuesaA, et al.. TRAF4 promotes TGF-beta receptor signaling and drives breast cancer metastasis. Mol Cell, 2013, 51(5): 559-572

[48]

DesgrosellierJS, ChereshDA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 2010, 10(1): 9-22

[49]

KadryYA, CalderwoodDA. Chapter 22: Structural and signaling functions of integrins. Biochim Biophys Acta Biomembr, 2020, 1862(5): 183206

[50]

LinJ, LinW, YeY, et al.. Kindlin-2 promotes hepatocellular carcinoma invasion and metastasis by increasing Wnt/β-catenin signaling. J Exp Clin Cancer Res, 2017, 36(1): 134

[51]

WeiX, WangX, ZhanJ, et al.. Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation. J Cell Biol, 2017, 216(5): 1455-1471

[52]

BernabeuC, Lopez-NovoaJM, QuintanillaM. The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta, 2009, 1792(10): 954-973

[53]

WangJ, ZhangY, WengW, et al.. Impaired phosphorylation and ubiquitination by p70 S6 kinase (p70S6K) and Smad ubiquitination regulatory factor 1 (Smurf1) promote tribbles homolog 2 (TRIB2) stability and carcinogenic property in liver cancer. J Biol Chem, 2013, 288(47): 33667-33681

[54]

EyersPA, KeeshanK, KannanN. Tribbles in the 21st century: the evolving roles of tribbles pseudokinases in biology and disease. Trends Cell Biol, 2017, 27(4): 284-298

[55]

WangJ, ParkJS, WeiY, et al.. TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPα function. Mol Cell, 2013, 51(2): 211-225

[56]

XuS, TongM, HuangJ, et al.. TRIB2 inhibits Wnt/beta-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, beta-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett, 2014, 588(23): 4334-4341

[57]

YangS, JiaR, BianZ. SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma. Biochim Biophys Acta Mol Cell Res, 2018, 1865(9): 1161-1172

[58]

KimHR, LeeGO, ChoiKH, et al.. SRSF5: a novel marker for small-cell lung cancer and pleural metastatic cancer. Lung Cancer, 2016, 99: 57-65

[59]

ChenY, HuangQ, LiuW, et al.. Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth. Nat Commun, 2018, 9(1): 2464

[60]

MizushimaN, LevineB, CuervoAM, et al.. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182): 1069-1075

[61]

LevineB, KroemerG. Biological functions of autophagy genes: a disease perspective. Cell, 2019, 176(1–2): 11-42

[62]

QuachC, SongY, GuoH, et al.. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun, 2019, 10(1): 5681

[63]

FengX, JiaY, ZhangY, et al.. Ubiquitination of UVRAG by SMURF1 promotes autophagosome maturation and inhibits hepatocellular carcinoma growth. Autophagy, 2019, 15(7): 1130-1149

[64]

SmaAN. The canonical Wnt Signaling (Wnt/β-Catenin pathway): a potential target for cancer prevention and therapy. Iran Biomed J, 2020, 24(5): 269-280

[65]

FeiC, LiZ, LiC, et al.. Smurf1-mediated lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/β-Catenin signaling. Mol Cell Biol, 2013, 33(20): 4095-4105

[66]

LiuL, XuC, HsiehJT, et al.. DAB2IP in cancer. Oncotarget, 2016, 7(4): 3766-3776

[67]

LiX, DaiX, WanL, et al.. Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget, 2016, 7(18): 26057-26069

[68]

KanapathipillaiM. Treating p53 mutant aggregation-associated cancer. Cancers (Basel), 2018, 10(6): 154

[69]

KooN, SharmaAK, NarayanS. Therapeutics targeting p53-MDM2 interaction to induce cancer cell death. Int J Mol Sci, 2022, 23(9): 5005

[70]

HouH, SunD, ZhangX. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int, 2019, 19: 216

[71]

ShaikhMF, MoranoWF, LeeJ, et al.. Emerging role of MDM2 as target for anti-cancer therapy: a review. Ann Clin Lab Sci, 2016, 46(6): 627-634

[72]

HauptY, MayaR, KazazA, et al.. Mdm2 promotes the rapid degradation of p53. Nature, 1997, 387(6630): 296-299

[73]

NieJ, XieP, LiuL, et al.. Smad ubiquitylation regulatory factor 1/2 (Smurf1/2) promotes p53 degradation by stabilizing the E3 ligase MDM2. J Biol Chem, 2010, 285(30): 22818-22830

[74]

GuérillonC, LarrieuD, PedeuxR. ING1 and ING2: multifaceted tumor suppressor genes. Cell Mol Life Sci, 2013, 70(20): 3753-3772

[75]

BlondelA, BenberghoutA, PedeuxR, et al.. Exploiting ING2 epigenetic modulation as a therapeutic opportunity for non-small cell lung cancer. Cancers (Basel), 2019, 11(10): 1601

[76]

NieJ, LiuL, WuM, et al.. HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation. FEBS Lett, 2010, 584(14): 3005-3012

[77]

ButlerMT, WallingfordJB. Planar cell polarity in development and disease. Nat Rev Mol Cell Biol, 2017, 18(6): 375-388

[78]

ButlerMT, WallingfordJB. Control of vertebrate core planar cell polarity protein localization and dynamics by Prickle 2. Development, 2015, 142(19): 3429-3439

[79]

BirkOS, CasianoDE, WassifCA, et al.. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature, 2000, 403(6772): 909-913

[80]

YamazakiF, MøllerM, FuC, et al.. The Lhx9 homeobox gene controls pineal gland development and prevents postnatal hydrocephalus. Brain Struct Funct, 2015, 220(3): 1497-1509

[81]

TandonP, WilczewskiCM, WilliamsCE, et al.. The Lhx9-integrin pathway is essential for positioning of the proepicardial organ. Development, 2016, 143(5): 831-840

[82]

HuF, ZhuQ, SunB, et al.. Smad ubiquitylation regulatory factor 1 promotes LIM-homeobox gene 9 degradation and represses testosterone production in Leydig cells. FASEB J, 2018, 32(9): 4627-4640

[83]

CobbinaE, AkhlaghiF. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev, 2017, 49(2): 197-211

[84]

FriedmanSL, Neuschwander-TetriBA, RinellaM, et al.. Mechanisms of NAFLD development and therapeutic strategies. Nat Med, 2018, 24(7): 908-922

[85]

ZhangX, ZhanY, LinW, et al.. Smurf1 aggravates non-alcoholic fatty liver disease by stabilizing SREBP-1c in an E3 activity-independent manner. FASEB J, 2020, 34(6): 7631-7643

[86]

ChiTF, HorbachT, GötzC, et al.. Cyclin-dependent kinase 5 (CDK5)-mediated phosphorylation of upstream stimulatory factor 2 (USF2) contributes to carcinogenesis. Cancers (Basel), 2019, 11(4): 523

[87]

TanY, ChenY, DuM, et al.. USF2 inhibits the transcriptional activity of Smurf1 and Smurf2 to promote breast cancer tumorigenesis. Cell Signal, 2019, 53: 49-58

[88]

LiangS, ZhuC, SuoC, et al.. Mitochondrion-localized SND1 promotes mitophagy and liver cancer progression through PGAM5. Front Oncol, 2022, 12: 857968

[89]

KurumaH, KamataY, TakahashiH, et al.. Staphylococcal nuclease domain-containing protein 1 as a potential tissue marker for prostate cancer. Am J Pathol, 2009, 174(6): 2044-2050

[90]

TsuchiyaN, OchiaiM, NakashimaK, et al.. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis. Cancer Res, 2007, 67(19): 9568-9576

[91]

YuL, LiuX, CuiK, et al.. SND1 acts downstream of TGFβ1 and upstream of Smurf1 to promote breast cancer metastasis. Cancer Res, 2015, 75(7): 1275-1286

[92]

ZhanF, ZhongY, QinY, et al.. SND1 facilitates the invasion and migration of cervical cancer cells by Smurf1-mediated degradation of FOXA2. Exp Cell Res, 2020, 388(1): 111809

[93]

LeeHL, YiT, BaekK, et al.. Tumor necrosis factor-α enhances the transcription of Smad ubiquitination regulatory factor 1 in an activating protein-1- and Runx2-dependent manner. J Cell Physiol, 2013, 228(5): 1076-1086

[94]

YangH, YuN, XuJ, et al.. SMURF1 facilitates estrogen receptor ɑ signaling in breast cancer cells. J Exp Clin Cancer Res, 2018, 37(1): 24

[95]

VimalrajS, PartridgeNC, SelvamuruganN. A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol, 2014, 229(9): 1236-1244

[96]

LiuY, LiuW, HuC, et al.. MiR-17 modulates osteogenic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from periodontal ligaments of patients with periodontitis. Stem Cells, 2011, 29(11): 1804-1816

[97]

LiuW, QiM, KonermannA, et al.. The p53/miR-17/Smurf1 pathway mediates skeletal deformities in an age-related model via inhibiting the function of mesenchymal stem cells. Aging (Albany NY), 2015, 7(3): 205-218

[98]

LiuL, ZhengW, SongY, et al.. miRNA-497 enhances the sensitivity of colorectal cancer cells to neoadjuvant chemotherapeutic drug. Curr Protein Pept Sci, 2015, 16(4): 310-315

[99]

LiD, XuX, MiaoJ, et al.. MicroRNA-125a inhibits tumorigenesis by targeting Smurf1 in colorectal carcinoma. FEBS Open Bio, 2019, 9(7): 1305-1314

[100]

JiangM, ShiL, YangC, et al.. miR-1254 inhibits cell proliferation, migration, and invasion by down-regulating Smurf1 in gastric cancer. Cell Death Dis, 2019, 10(1): 32

[101]

XuS, HuiL, YangN, et al.. Upregulation of microRNA-194-5p inhibits hypopharyngeal carcinoma cell proliferation, migration and invasion by targeting SMURF1 via the mTOR signaling pathway. Int J Oncol, 2019, 54(4): 1245-1255

[102]

FukunagaE, InoueY, KomiyaS, et al.. Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells. J Biol Chem, 2008, 283(51): 35660-35667

[103]

LiD, XieP, ZhaoF, et al.. F-box protein Fbxo3 targets Smurf1 ubiquitin ligase for ubiquitination and degradation. Biochem Biophys Res Commun, 2015, 458(4): 941-945

[104]

CuiY, HeS, XingC, et al.. SCF(FBXL15) regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1. EMBO J, 2011, 30(13): 2675-2689

[105]

ZhangC, PengZ, ZhuM, et al.. USP9X destabilizes pVHL and promotes cell proliferation. Oncotarget, 2016, 7(37): 60519-60534

[106]

ZhuC, JiX, ZhangH, et al.. Deubiquitylase USP9X suppresses tumorigenesis by stabilizing large tumor suppressor kinase 2 (LATS2) in the Hippo pathway. J Biol Chem, 2018, 293(4): 1178-1191

[107]

XieY, AvelloM, SchirleM, et al.. Deubiquitinase FAM/USP9X interacts with the E3 ubiquitin ligase SMURF1 protein and protects it from ligase activity-dependent self-degradation. J Biol Chem, 2013, 288(5): 2976-2985

[108]

CappellSD, MarkKG, GarbettD, et al.. EMI1 switches from being a substrate to an inhibitor of APC/C(CDH1) to start the cell cycle. Nature, 2018, 558(7709): 313-317

[109]

CappellSD, ChungM, JaimovichA, et al.. Irreversible APC(Cdh1) inactivation underlies the point of no return for cell-cycle entry. Cell, 2016, 166(1): 167-180

[110]

WanL, ZouW, GaoD, et al.. Cdh1 regulates osteoblast function through an APC/C-independent modulation of Smurf1. Mol Cell, 2011, 44(5): 721-733

[111]

ChengPL, LuH, ShellyM, et al.. Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron, 2011, 69(2): 231-243

[112]

LinH, LinQ, LiuM, et al.. PKA/Smurf1 signaling-mediated stabilization of Nur77 is required for anticancer drug cisplatin-induced apoptosis. Oncogene, 2014, 33(13): 1629-1639

[113]

SangadalaS, BodenSD, ViggeswarapuM, et al.. LIM mineralization protein-1 potentiates bone morphogenetic protein responsiveness via a novel interaction with Smurf1 resulting in decreased ubiquitination of Smads. J Biol Chem, 2006, 281(25): 17212-17219

[114]

PengX, WuX, ZhangJ, et al.. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res, 2018, 7(2): 173-178

[115]

LiuJ, LuC, WuX, et al.. Targeting osteoblastic casein kinase-2 interacting protein-1 to enhance Smad-dependent BMP signaling and reverse bone formation reduction in glucocorticoid-induced osteoporosis. Sci Rep, 2017, 7: 41295

[116]

SahaiE, Garcia-MedinaR, PouysségurJ, et al.. Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol, 2007, 176(1): 35-42

[117]

KoefoedK, Skat-RordamJ, AndersenP, et al.. The E3 ubiquitin ligase SMURF1 regulates cell-fate specification and outflow tract septation during mammalian heart development. Sci Rep, 2018, 8(1): 9542

[118]

WernerCT, ViswanathanR, MartinJA, et al.. E3 Ubiquitin-protein ligase SMURF1 in the nucleus accumbens mediates cocaine seeking. Biol Psychiatry, 2018, 84(12): 881-892

[119]

CaoY, WangC, ZhangX, et al.. Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Sci Rep, 2014, 4(1): 4965

[120]

KatoS, SangadalaS, TomitaK, et al.. A synthetic compound that potentiates bone morphogenetic protein-2-induced transdifferentiation of myoblasts into the osteoblastic phenotype. Mol Cell Biochem, 2011, 349(1–2): 97-106

[121]

BékésM, LangleyDR, CrewsCM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov, 2022, 21(3): 181-200

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/