Newly Detected Transmission of blaKPC-2 by Outer Membrane Vesicles in Klebsiella Pneumoniae

Liu-jun Chen , Xiao-peng Jing , Dong-li Meng , Ting-ting Wu , Huan Zhou , Rui-ling Sun , Xiao-chun Min , Rong Liu , Ji Zeng

Current Medical Science ›› 2023, Vol. 43 ›› Issue (1) : 80 -85.

PDF
Current Medical Science ›› 2023, Vol. 43 ›› Issue (1) : 80 -85. DOI: 10.1007/s11596-022-2680-7
Article

Newly Detected Transmission of blaKPC-2 by Outer Membrane Vesicles in Klebsiella Pneumoniae

Author information +
History +
PDF

Abstract

Objective

The prevalence of carbapenem-resistant Klebsiella pneumoniae (CR-KP) is a global public health problem. It is mainly caused by the plasmid-carried carbapenemase gene. Outer membrane vesicles (OMVs) contain toxins and other factors involved in various biological processes, including β-lactamase and antibiotic-resistance genes. This study aimed to reveal the transmission mechanism of OMV-mediated drug resistance of Klebsiella (K.) pneumoniae.

Methods

We selected CR-KP producing K. pneumoniae carbapenemase-2 (KPC-2) to study whether they can transfer resistance genes through OMVs. The OMVs of CR-KP were obtained by ultracentrifugation, and incubated with carbapenem-sensitive K. pneumoniae for 4 h. Finally, the carbapenem-sensitive K. pneumoniae was tested for the presence of blaKPC-2 resistance gene and its sensitivity to carbapenem antibiotics.

Results

The existence of OMVs was observed by the electron microscopy. The extracted OMVs had blaKPC-2 resistance gene. After incubation with OMVs, blaKPC-2 resistance gene was detected in sensitive K. pneumoniae, and it became resistant to imipenem and meropenem.

Conclusion

This study demonstrated that OMVs isolated from KPC-2-producing CR-KP could deliver blaKPC-2 to sensitive K. pneumoniae, allowing the bacteria to produce carbapenemase, which may provide a novel target for innovative therapies in combination with conventional antibiotics for treating carbapenem-resistant Enterobacteriaceae.

Keywords

blaKPC-2 / carbapenem-resistant Klebsiella pneumoniae / carbapenemase / outer membrane vesicles / simplified carbapenem inactivation method

Cite this article

Download citation ▾
Liu-jun Chen, Xiao-peng Jing, Dong-li Meng, Ting-ting Wu, Huan Zhou, Rui-ling Sun, Xiao-chun Min, Rong Liu, Ji Zeng. Newly Detected Transmission of blaKPC-2 by Outer Membrane Vesicles in Klebsiella Pneumoniae. Current Medical Science, 2023, 43(1): 80-85 DOI:10.1007/s11596-022-2680-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PranavathiyaniG, PravaJ, RajeevAC, et al.. Novel Target Exploration from Hypothetical Proteins of Klebsiella pneumoniae MGH 78578 Reveals a Protein Involved in Host-Pathogen Interaction. Front Cell Infect Microbiol, 2020, 10: 109

[2]

MartinRM, BachmanMA. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol, 2018, 8: 4

[3]

ZhangY, JinL, OuyangP, et al.. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. J Antimicrob Chemother, 2020, 75(2): 327-336

[4]

ZhangY, ZengJ, LiuW, et al.. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Infect, 2015, 71(5): 553-560

[5]

SherryNL, LaneCR, KwongJC, et al.. Genomics for Molecular Epidemiology and Detecting Transmission of Carbapenemase-Producing Enterobacterales in Victoria, Australia, 2012 to 2016. J Clin Microbiol, 2019, 57(9): e00573-19

[6]

RussoTA, MarrCM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev, 2019, 32(3): e00001-19

[7]

GuptaN, LimbagoBM, PatelJB, et al.. J. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis, 2011, 53: 60-67

[8]

LoganLK, WeinsteinRA. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J Infect Dis, 2017, 215: S28-S36

[9]

HongJ, Dauros-SingorenkoP, WhitcombeA, et al.. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions. J Extracell Vesicles, 2019, 8: 1632099

[10]

ToyofukuM, NomuraN, EberlL. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol, 2019, 17: 13-24

[11]

NevermannJ, SilvaA, OteroC, et al.. Identification of Genes Involved in Biogenesis of Outer Membrane Vesicles (OMVs) in Salmonella enterica Serovar Typhi. Front Microbiol, 2019, 10: 104

[12]

RumboC, Fernandez-MoreiraE, MerinoM, et al.. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother, 2011, 55: 3084-3090

[13]

LiaoYT, KuoSC, ChiangMH, et al.. Acinetobacter baumannii Extracellular OXA-58 Is Primarily and Selectively Released via Outer Membrane Vesicles after Sec-Dependent Periplasmic Translocation. Antimicrob Agents Chemother, 2015, 59: 7346-7354

[14]

LinJ, ZhangW, ChengJ, et al.. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun, 2017, 8: 14888

[15]

MartoraF, PintoF, FollieroV, et al.. Isolation, characterization and analysis of pro-inflammatory potential of Klebsiella pneumoniae outer membrane vesicles. Microb Pathog, 2019, 136: 103719

[16]

JasimR, HanML, ZhuY, et al.. Lipidomic Analysis of the Outer Membrane Vesicles from Paired Polymyxin-Susceptible and -Resistant Klebsiella pneumoniae Clinical Isolates. Int J Mol Sci, 2018, 19(8): 2356

[17]

CahillBK, SeeleyKW, GutelD, et al.. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles. Microbiol Res, 2015, 180: 1-10

[18]

WuG, JiH, GuoX, et al.. Nanoparticle reinforced bacterial outer-membrane vesicles effectively prevent fatal infection of carbapenem-resistant Klebsiella pneumoniae. Nanomedicine, 2020, 24: 102148

[19]

JingX, ZhouH, MinX, et al.. The Simplified Carbapenem Inactivation Method (sCIM) for Simple and Accurate Detection of Carbapenemase-Producing Gram-Negative Bacilli. Front Microbiol, 2018, 9: 2391

[20]

Jung AL, Hoffmann K, Herkt CE, et al. Legionella pneumophila Outer Membrane Vesicles: Isolation and Analysis of Their Pro-inflammatory Potential on Macrophages. J Vis Exp, 2017, (120):55146

[21]

HopkinsKL, MeunierD, NaasT, et al.. Evaluation of the NG-Test CARBA 5 multiplex immunochromatographic assay for the detection of KPC, OXA-48-like, NDM, VIM and IMP carbapenemases. J Antimicrob Chemother, 2018, 73(12): 3523-3526

[22]

WanD, JingX, ZhouH, et al.. Differences between meropenem and imipenem disk to detect carbapenemase in gram-negative bacilli using simplified carbapenem inactivation method. J Infect Chemother, 2020, 26: 636-639

[23]

GonzalezLJ, BahrG, NakashigeTG, et al.. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-beta-lactamase. Nat Chem Biol, 2016, 12: 516-522

[24]

ChatterjeeS, MondalA, MitraS, et al.. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. J Antimicrob Chemother, 2017, 72: 2201-2207

[25]

SchaarV, NordstromT, MorgelinM, et al.. Moraxella catarrhalis outer membrane vesicles carry beta-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother, 2011, 55(8): 3845-3853

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/